欠拟合、过拟合

如下图中三个拟合模型。第一个是一个线性模型,对训练数据拟合不够好,损失函数取值较大。如图中第二个模型,如果我们在线性模型上加一个新特征项,拟合结果就会好一些。图中第三个是一个包含5阶多项式的模型,对训练数据几乎完美拟合。

模型一没有很好的拟合训练数据,在训练数据以及在测试数据上都存在较大误差,这种情况称之为欠拟合(underfitting)

模型三对训练数据拟合的很不错,但是在测试数据上的准确度并不理想。这种对训练数据拟合较好,而在测试数据上准确度较低的情况称之为过拟合(overfitting)

局部加权线性回归(Locally weighted linear regression,LWR)

从上面欠拟合和过拟合的例子中我们可以体会到,在回归预测模型中,预测模型的准确度特别依赖于特征的选择。特征选择不合适,往往会导致预测结果的天壤之别。局部加权线性回归很好的解决了这个问题,它的预测性能不太依赖于选择的特征,又能很好的避免欠拟合和过拟合的风险。

在理解局部加权线性回归前,先回忆一下线性回归。线性回归的损失函数把训练数据中的样本看做是平等的,并没有权重的概念。线性回归的详细请参考《线性回归、梯度下降》,它的主要思想为:

而局部加权线性回归,在构造损失函数时加入了权重w,对距离预测点较近的训练样本给以较高的权重,距离预测点较远的训练样本给以较小的权重。权重的取值范围是(0,1)。

局部加权线性回归的主要思想是:

其中假设权重符合公式

公式中权重大小取决于预测点x与训练样本的距离。如果|- x|较小,那么取值接近于1,反之接近0。参数τ称为bandwidth,用于控制权重的变化幅度。

局部加权线性回归优点是不太依赖特征选择,而且只需要用线性模型就训练出不错的拟合模型。

但是由于局部加权线性回归是一个非参数学习算法,损失值随着预测值的不同而不同,这样θ无法事先确定,每次预测时都需要扫描所有数据重新计算θ,所以计算量比较大。

出处:http://www.cnblogs.com/BYRans/

局部加权回归、欠拟合、过拟合(Locally Weighted Linear Regression、Underfitting、Overfitting)的更多相关文章

  1. Locally weighted linear regression(局部加权线性回归)

    (整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 前面几篇博客主要介绍了线性回归的学习算法,那么它有什么不足的地方么 ...

  2. Locally Weighted Linear Regression 局部加权线性回归-R实现

      局部加权线性回归  [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 线性回归容易出现过拟合或欠拟合的问 ...

  3. 局部权重线性回归(Locally weighted linear regression)

    在线性回归中,因为对參数个数选择的问题是在问题求解之前已经确定好的,因此參数的个数不能非常好的确定,假设參数个数过少可能拟合度不好,产生欠拟合(underfitting)问题,或者參数过多,使得函数过 ...

  4. 局部加权线性回归(Locally weighted linear regression)

    首先我们来看一个线性回归的问题,在下面的例子中,我们选取不同维度的特征来对我们的数据进行拟合. 对于上面三个图像做如下解释: 选取一个特征,来拟合数据,可以看出来拟合情况并不是很好,有些数据误差还是比 ...

  5. 局部加权回归、欠拟合、过拟合 - Andrew Ng机器学习公开课笔记1.3

    本文主要解说局部加权(线性)回归.在解说局部加权线性回归之前,先解说两个概念:欠拟合.过拟合.由此引出局部加权线性回归算法. 欠拟合.过拟合 例如以下图中三个拟合模型.第一个是一个线性模型.对训练数据 ...

  6. 线性回归 Linear regression(4) 局部加权回归

    这篇文章将介绍过拟合和欠拟合的概念,并且介绍局部加权回归算法. 过拟合和欠拟合 之前在线性回归中,我们总是将单独的x作为我们的特征,但其实我们可以考虑将,甚至x的更高次作为我们的特征,那么我们通过线性 ...

  7. 第三集 欠拟合与过拟合的概念、局部加权回归、logistic回归、感知器算法

    课程大纲 欠拟合的概念(非正式):数据中某些非常明显的模式没有成功的被拟合出来.如图所示,更适合这组数据的应该是而不是一条直线. 过拟合的概念(非正式):算法拟合出的结果仅仅反映了所给的特定数据的特质 ...

  8. Robust Locally Weighted Regression 鲁棒局部加权回归 -R实现

    鲁棒局部加权回归 [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 算法参考文献: (1) Robust L ...

  9. Stanford大学机器学习公开课(三):局部加权回归、最小二乘的概率解释、逻辑回归、感知器算法

    (一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为 ...

随机推荐

  1. 修改httpd默认端口号

    Tomcat: vim /etc/httpd/conf/httpd.conf//别忘了service httpd restart Nginx: vim /etc/nginx/nginx.conf//完 ...

  2. 【BZOJ 1065】【Vijos 1826】【NOI 2008】奥运物流

    http://www.lydsy.com/JudgeOnline/problem.php?id=1065 https://vijos.org/p/1826 好难的题啊TWT ∈我这辈子也想不出来系列~ ...

  3. Thinking in java学习笔记之迭代器

    Map<String,String> map = new HashMap<String,String>(); List list = new ArrayList(); list ...

  4. css-css权威指南学习笔记5

    第六章 文本属性 1.text-indent只能作用于块级元素(如p或inline-block或block后的span/a/i等). 2.text-align只能作用于块级元素(如p或inline-b ...

  5. LNMP源码编译安装(centos7+nginx1.9+mysql5.6+php7)

    1.准备工作: 1)把所有的软件安装在/Data/apps/,源码包放在/Data/tgz/,数据放在/Data/data,日志文件放在/Data/logs,项目放在/Data/webapps, mk ...

  6. 发起post、get请求

    HttpURLConnection对象 /*** * 发起post请求,传输xml数据 * @param strUrl 请求地址 * @param xml 发送数据 * @return string ...

  7. BZOJ4416: [Shoi2013]阶乘字符串

    可以大胆猜想n>21时无解,至于依据,不开O2,1s,n<=21刚好能卡过去= = 并不会证= = #include<cstdio> void up(int& a,in ...

  8. 11月7日上午PHP会话控制(session和cookie)、跨页面传值

    1.session  登录上一个页面以后,长时间没有操作,刷新页面以后需要重新登录. 特点:(1)session是存储在服务器:   (2)session每个人(登陆者)存一份: (3)session ...

  9. RDS MySQL 空间问题的原因和解决

    来源:https://help.aliyun.com/knowledge_detail/41739.html RDS MySQL 空间问题的原因和解决 更新时间:2016-07-22 17:20:14 ...

  10. [Unity3d]游戏中子弹碰撞的处理

    如果使用Collider+Rigidbody的方式来处理,则它是每一帧进行判定碰撞:如果子弹过快导致碰撞发生在2帧之间,则会导致无法捕获这个碰撞效果 基于上述原因,我们要使用射线Raycast进行子弹 ...