腐蚀和膨胀 Erosion/Dilation

erosion/dilation,用白话说,就是让图像亮的区域收缩和扩张.

原理

  • 我们定义一个卷积核矩阵.这个矩阵可以是任何形状的,但通常而言,是矩形或者圆形的.同时要定义一个锚点位置.
  • 用这个卷积核矩阵挨个地划过原始图像矩阵,同时更改锚点位置的像素值.
  • 锚点位置的像素值更改为卷积核矩阵覆盖的有效像素值中的最大值/最小值(分别对应膨胀/腐蚀).

    什么叫"有效"像素值呢?就是卷积核中不为0的那些位置.用公式表达的话,即:



膨胀和腐蚀,说白了就是个求"卷积核所表示的局部"的最大值最小值的过程.

我们来看一个例子:

import cv2
import numpy as np
def test1():
img = np.zeros((10,10,1),np.uint8)
img[3:7,3:7,:] = 255
img[4:6,4:6,:] = 200 kernel1 = cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
erosion_dst = cv2.erode(img, kernel1)
print(erosion_dst)

首先我们创建一个10 x 10的图像,像素如下:

[[  0   0   0   0   0   0   0   0   0   0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 255 255 255 255 0 0 0]
[ 0 0 0 255 200 200 255 0 0 0]
[ 0 0 0 255 200 200 255 0 0 0]
[ 0 0 0 255 255 255 255 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]]

我们创建一个卷积核:

kernel1 = cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))

getStructuringElement api



三个参数分别为卷积核的形状/大小/锚点位置. 默认锚点在矩阵的中心位置.

形状有三种

上面代码中我们创建的3 x 3矩形卷积核如下

用这个卷积核对原始图像做腐蚀后得到的矩阵如下

即矩阵有如下变化:

[[  0   0   0   0   0   0   0   0   0   0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 255 255 255 255 0 0 0]
[ 0 0 0 255 200 200 255 0 0 0]
[ 0 0 0 255 200 200 255 0 0 0]
[ 0 0 0 255 255 255 255 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]] --> [[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 200 200 0 0 0 0]
[ 0 0 0 0 200 200 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]]

我们考虑第三行第四列img[2,3,:]这个像素.当我们的卷积核矩阵的锚点位置与该像素重合时,我们取周边所有像素的最小值.最小值为0.所以该位置的像素值变为0. 其余位置的像素值同理可求.

我们稍微改一下我们的代码,然后再看一下不同卷积核作用下的不同结果,会理解的更清楚

import cv2
import numpy as np
def test1():
img = np.zeros((10,10,1),np.uint8)
img[3:7,3:7,:] = 255
img[4:6,4:6,:] = 200 kernel1 = cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
print(kernel1)
erosion_dst = cv2.erode(img, kernel1)
print(erosion_dst) def test2():
img = np.zeros((10,10,1),np.uint8)
img[3:7,3:7,:] = 255
img[4:6,4:6,:] = 200
img[2,4,:] = 100 kernel1 = cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
erosion_dst = cv2.erode(img, kernel1)
print(erosion_dst) kernel2 = cv2.getStructuringElement(cv2.MORPH_CROSS,(3,3))
erosion_dst2 = cv2.erode(img, kernel2)
print(erosion_dst2) test2()

我们把原始图像矩阵改为

[[  0   0   0   0   0   0   0   0   0   0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 100 0 0 0 0 0]
[ 0 0 0 255 255 255 255 0 0 0]
[ 0 0 0 255 200 200 255 0 0 0]
[ 0 0 0 255 200 200 255 0 0 0]
[ 0 0 0 255 255 255 255 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0]]

用kernal1时,kernal1如下:



以第四行,第五列的像素为例,用卷积核的锚点与之对应,此时计算的是其周围八个像素的最小值,最小值为0.

所以我们得到的矩阵为

当我们用kernal2时,kernal2如下:



对第四行,第五列的像素,用卷积核的锚点与之对应,此时计算的不再是周围八个像素的最小值,而是其正上方,正下方,正左边,正右边的四个像素的最小值.该值为100.

所以我们得到的矩阵为

opencv示例

from __future__ import print_function
import cv2 as cv
import numpy as np
import argparse erosion_size = 0
max_elem = 2
max_kernel_size = 21 title_trackbar_element_type = 'Element:\n 0: Rect \n 1: Cross \n 2: Ellipse'
title_trackbar_kernel_size = 'Kernel size:\n 2n +1'
title_erosion_window = 'Erosion Demo'
title_dilatation_window = 'Dilation Demo' def erosion(val):
erosion_size = cv.getTrackbarPos(title_trackbar_kernel_size, title_erosion_window)
erosion_type = 0
val_type = cv.getTrackbarPos(title_trackbar_element_type, title_erosion_window)
if val_type == 0:
erosion_type = cv.MORPH_RECT
elif val_type == 1:
erosion_type = cv.MORPH_CROSS
elif val_type == 2:
erosion_type = cv.MORPH_ELLIPSE
element = cv.getStructuringElement(erosion_type, (2*erosion_size + 1, 2*erosion_size+1), (erosion_size, erosion_size))
erosion_dst = cv.erode(src, element)
cv.imshow(title_erosion_window, erosion_dst) def dilatation(val):
dilatation_size = cv.getTrackbarPos(title_trackbar_kernel_size, title_dilatation_window)
dilatation_type = 0
val_type = cv.getTrackbarPos(title_trackbar_element_type, title_dilatation_window)
if val_type == 0:
dilatation_type = cv.MORPH_RECT
elif val_type == 1:
dilatation_type = cv.MORPH_CROSS
elif val_type == 2:
dilatation_type = cv.MORPH_ELLIPSE
element = cv.getStructuringElement(dilatation_type, (2*dilatation_size + 1, 2*dilatation_size+1), (dilatation_size, dilatation_size))
dilatation_dst = cv.dilate(src, element)
cv.imshow(title_dilatation_window, dilatation_dst) src = cv.imread("/home/sc/disk/keepgoing/opencv_test/j.png")
cv.namedWindow(title_erosion_window)
cv.createTrackbar(title_trackbar_element_type, title_erosion_window , 0, max_elem, erosion)
cv.createTrackbar(title_trackbar_kernel_size, title_erosion_window , 0, max_kernel_size, erosion) cv.namedWindow(title_dilatation_window)
cv.createTrackbar(title_trackbar_element_type, title_dilatation_window , 0, max_elem, dilatation)
cv.createTrackbar(title_trackbar_kernel_size, title_dilatation_window , 0, max_kernel_size, dilatation) erosion(0)
dilatation(0)
cv.waitKey()

通过createTrackbar在窗口上创建两个bar,方便我们看不同种类不同大小的卷积核的影响.

cv.createTrackbar(title_trackbar_element_type, title_erosion_window , 0, max_elem, erosion)
cv.createTrackbar(title_trackbar_kernel_size, title_erosion_window , 0, max_kernel_size, erosion)

原始图片:

处理效果:

opencv实现

https://github.com/opencv/opencv/blob/master/modules/imgproc/src/morph.dispatch.cpp

opencv之膨胀与腐蚀的更多相关文章

  1. opencv 形态学膨胀和腐蚀以及开运算和闭运算

  2. 图像的膨胀与腐蚀——OpenCV与C++的具体实现

    目录 1. 膨胀与腐蚀的原理 2. 膨胀的具体实现 1) OpenCV实现 2) C/C++实现 3) 验证与结果 3. 腐蚀的具体实现 1. 膨胀与腐蚀的原理 膨胀与腐蚀是数学形态学在图像处理中最基 ...

  3. OpenCV——图像处理入门:膨胀与腐蚀、图像模糊、边缘检测

    全部外部依赖项: opencv_aruco341d.lib opencv_bgsegm341d.lib opencv_calib3d341d.lib opencv_bioinspired341d.li ...

  4. OpenCV膨胀与腐蚀

    膨胀与腐蚀 本篇博客主要介绍使用OpenCV中的函数接口实现对一个图片的腐蚀或者膨胀,听起来有点像是对图像进行放大和缩小的意思,如果你也是这样认为,那我只能说你跟我一样肤浅!!在OpenCV中几乎所有 ...

  5. OpenCV图像处理篇之腐蚀与膨胀

    转载请注明出处:http://xiahouzuoxin.github.io/notes 腐蚀与膨胀 腐蚀和膨胀是图像的形态学处理中最主要的操作,之后遇见的开操作和闭操作都是腐蚀和膨胀操作的结合运算. ...

  6. OpenCV膨胀和腐蚀示例代码

    #include<cv.h> #include<highgui.h> int main(int argc, char** argv) { IplImage* img = cvL ...

  7. 学习 opencv---(9)形态学图像处理(一):膨胀和腐蚀

    本篇文章中,我们一起探究了图像处理中,最基本的形态学运算--膨胀与腐蚀.浅墨在文章开头友情提醒,用人物照片做腐蚀和膨胀的素材图片得到的效果会比较惊悚,毁三观的,不建议尝试.......... 一.理论 ...

  8. Atitit 图像处理—图像形态学(膨胀与腐蚀)

    Atitit 图像处理-图像形态学(膨胀与腐蚀) 1.1. 膨胀与腐蚀1 1.2. 图像处理之二值膨胀及应用2 1.3. 测试原理,可以给一个5*5pic,测试膨胀算法5 1.4. Photoshop ...

  9. paper 76:膨胀、腐蚀、开、闭运算——数字图像处理中的形态学

    膨胀.腐蚀.开.闭运算是数学形态学最基本的变换.本文主要针对二值图像的形态学膨胀:把二值图像各1像素连接成分的边界扩大一层(填充边缘或0像素内部的孔):腐蚀:把二值图像各1像素连接成分的边界点去掉从而 ...

随机推荐

  1. gulp的介绍和手动安装

    gulp, 前端自动化工具, 文件操作, 项目上线之前,将碎片文件合并,将ES6转成ES5,文件压缩,快速搭建服务器... gulp基于node环境 gulp就是node的一个非内置的小模块 gulp ...

  2. Kafka中的ISR、AR又代表什么?ISR的伸缩又指什么?

    相信大家已经对 kafka 的基本概念已经有一定的了解了,下面直接来分析一下 ISR 和 AR 的概念. ISR and AR 简单来说,分区中的所有副本统称为 AR (Assigned Replic ...

  3. 【Spring】AOP注解方式实现机制

    一.概述 二.@EnableAspectJAutoProxy 注解分析 三.分析AnnotationAwareAspectJAutoProxyCreator 四.执行流程 1. registerBea ...

  4. Mysql 用户root密码重置

    Asterisk安装完成之后,接手新的Asterisk系统后不清楚Mysql的root账号密码. 重新重置mysql的root密码的方式 先查看mysql的版本号. 我的测试环境下的mysql版本为5 ...

  5. python判断一个数是否为整数

  6. 来几道水题 d050: 妳那裡現在幾點了?

    减去15即可(注意这个数小于15的情况) 题目:珊珊到了美国犹他州的杨百翰大学之后,文文禁不住对她的思念,常常想打电话给她,却又担心在美国的她是不是在睡觉.好不容易鼓起勇气打通了电话,第一句就先问:「 ...

  7. 05:(H5*) node、npm、nrm

    目录: 1:NPM 2:CNPM 3:NRM 4:homebrew 5:具体指令 6: -g -S -D 1:NPM NPM的全称是Node Package Manager, 是一个NodeJS包管理 ...

  8. Android四大组件之服务的两种启动方式详解

    Service简单概述 Service(服务):是一个没有用户界面.可以在后台长期运行且可以执行操作的应用组件.服务可由其他应用组件启动(如:Activity.另一个service).此外,组件可以绑 ...

  9. 复习0824js

    编程思想: 面向过程:凡事亲力亲为,所有事情的过程都要清楚,注重的是过程. 面向对象:提出需求,找到对象,对象解决这个问题,我们要结果,注重的是结果. 面向对象的特性:封装,继承,多态: JS: 是一 ...

  10. (七十三)c#Winform自定义控件-资源加载窗体

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. GitHub:https://github.com/kwwwvagaa/NetWinformControl 码云:ht ...