Spark 系列(四)—— RDD常用算子详解
一、Transformation
spark 常用的 Transformation 算子如下表:
Transformation 算子 | Meaning(含义) |
---|---|
map(func) | 对原 RDD 中每个元素运用 func 函数,并生成新的 RDD |
filter(func) | 对原 RDD 中每个元素使用func 函数进行过滤,并生成新的 RDD |
flatMap(func) | 与 map 类似,但是每一个输入的 item 被映射成 0 个或多个输出的 items( func 返回类型需要为 Seq )。 |
mapPartitions(func) | 与 map 类似,但函数单独在 RDD 的每个分区上运行, func函数的类型为 Iterator<T> => Iterator<U> ,其中 T 是 RDD 的类型,即 RDD[T] |
mapPartitionsWithIndex(func) | 与 mapPartitions 类似,但 func 类型为 (Int, Iterator<T>) => Iterator<U> ,其中第一个参数为分区索引 |
sample(withReplacement, fraction, seed) | 数据采样,有三个可选参数:设置是否放回(withReplacement)、采样的百分比(fraction)、随机数生成器的种子(seed); |
union(otherDataset) | 合并两个 RDD |
intersection(otherDataset) | 求两个 RDD 的交集 |
distinct([numTasks])) | 去重 |
groupByKey([numTasks]) | 按照 key 值进行分区,即在一个 (K, V) 对的 dataset 上调用时,返回一个 (K, Iterable<V>) Note: 如果分组是为了在每一个 key 上执行聚合操作(例如,sum 或 average),此时使用 reduceByKey 或 aggregateByKey 性能会更好Note: 默认情况下,并行度取决于父 RDD 的分区数。可以传入 numTasks 参数进行修改。 |
reduceByKey(func, [numTasks]) | 按照 key 值进行分组,并对分组后的数据执行归约操作。 |
aggregateByKey(zeroValue,numPartitions)(seqOp, combOp, [numTasks]) | 当调用(K,V)对的数据集时,返回(K,U)对的数据集,其中使用给定的组合函数和 zeroValue 聚合每个键的值。与 groupByKey 类似,reduce 任务的数量可通过第二个参数进行配置。 |
sortByKey([ascending], [numTasks]) | 按照 key 进行排序,其中的 key 需要实现 Ordered 特质,即可比较 |
join(otherDataset, [numTasks]) | 在一个 (K, V) 和 (K, W) 类型的 dataset 上调用时,返回一个 (K, (V, W)) pairs 的 dataset,等价于内连接操作。如果想要执行外连接,可以使用 leftOuterJoin , rightOuterJoin 和 fullOuterJoin 等算子。 |
cogroup(otherDataset, [numTasks]) | 在一个 (K, V) 对的 dataset 上调用时,返回一个 (K, (Iterable<V>, Iterable<W>)) tuples 的 dataset。 |
cartesian(otherDataset) | 在一个 T 和 U 类型的 dataset 上调用时,返回一个 (T, U) 类型的 dataset(即笛卡尔积)。 |
coalesce(numPartitions) | 将 RDD 中的分区数减少为 numPartitions。 |
repartition(numPartitions) | 随机重新调整 RDD 中的数据以创建更多或更少的分区,并在它们之间进行平衡。 |
repartitionAndSortWithinPartitions(partitioner) | 根据给定的 partitioner(分区器)对 RDD 进行重新分区,并对分区中的数据按照 key 值进行排序。这比调用 repartition 然后再 sorting(排序)效率更高,因为它可以将排序过程推送到 shuffle 操作所在的机器。 |
下面分别给出这些算子的基本使用示例:
1.1 map
val list = List(1,2,3)
sc.parallelize(list).map(_ * 10).foreach(println)
// 输出结果: 10 20 30 (这里为了节省篇幅去掉了换行,后文亦同)
1.2 filter
val list = List(3, 6, 9, 10, 12, 21)
sc.parallelize(list).filter(_ >= 10).foreach(println)
// 输出: 10 12 21
1.3 flatMap
flatMap(func)
与 map
类似,但每一个输入的 item 会被映射成 0 个或多个输出的 items( func 返回类型需要为 Seq
)。
val list = List(List(1, 2), List(3), List(), List(4, 5))
sc.parallelize(list).flatMap(_.toList).map(_ * 10).foreach(println)
// 输出结果 : 10 20 30 40 50
flatMap 这个算子在日志分析中使用概率非常高,这里进行一下演示:拆分输入的每行数据为单个单词,并赋值为 1,代表出现一次,之后按照单词分组并统计其出现总次数,代码如下:
val lines = List("spark flume spark",
"hadoop flume hive")
sc.parallelize(lines).flatMap(line => line.split(" ")).
map(word=>(word,1)).reduceByKey(_+_).foreach(println)
// 输出:
(spark,2)
(hive,1)
(hadoop,1)
(flume,2)
1.4 mapPartitions
与 map 类似,但函数单独在 RDD 的每个分区上运行, func函数的类型为 Iterator<T> => Iterator<U>
(其中 T 是 RDD 的类型),即输入和输出都必须是可迭代类型。
val list = List(1, 2, 3, 4, 5, 6)
sc.parallelize(list, 3).mapPartitions(iterator => {
val buffer = new ListBuffer[Int]
while (iterator.hasNext) {
buffer.append(iterator.next() * 100)
}
buffer.toIterator
}).foreach(println)
//输出结果
100 200 300 400 500 600
1.5 mapPartitionsWithIndex
与 mapPartitions 类似,但 func 类型为 (Int, Iterator<T>) => Iterator<U>
,其中第一个参数为分区索引。
val list = List(1, 2, 3, 4, 5, 6)
sc.parallelize(list, 3).mapPartitionsWithIndex((index, iterator) => {
val buffer = new ListBuffer[String]
while (iterator.hasNext) {
buffer.append(index + "分区:" + iterator.next() * 100)
}
buffer.toIterator
}).foreach(println)
//输出
0 分区:100
0 分区:200
1 分区:300
1 分区:400
2 分区:500
2 分区:600
1.6 sample
数据采样。有三个可选参数:设置是否放回 (withReplacement)、采样的百分比 (fraction)、随机数生成器的种子 (seed) :
val list = List(1, 2, 3, 4, 5, 6)
sc.parallelize(list).sample(withReplacement = false, fraction = 0.5).foreach(println)
1.7 union
合并两个 RDD:
val list1 = List(1, 2, 3)
val list2 = List(4, 5, 6)
sc.parallelize(list1).union(sc.parallelize(list2)).foreach(println)
// 输出: 1 2 3 4 5 6
1.8 intersection
求两个 RDD 的交集:
val list1 = List(1, 2, 3, 4, 5)
val list2 = List(4, 5, 6)
sc.parallelize(list1).intersection(sc.parallelize(list2)).foreach(println)
// 输出: 4 5
1.9 distinct
去重:
val list = List(1, 2, 2, 4, 4)
sc.parallelize(list).distinct().foreach(println)
// 输出: 4 1 2
1.10 groupByKey
按照键进行分组:
val list = List(("hadoop", 2), ("spark", 3), ("spark", 5), ("storm", 6), ("hadoop", 2))
sc.parallelize(list).groupByKey().map(x => (x._1, x._2.toList)).foreach(println)
//输出:
(spark,List(3, 5))
(hadoop,List(2, 2))
(storm,List(6))
1.11 reduceByKey
按照键进行归约操作:
val list = List(("hadoop", 2), ("spark", 3), ("spark", 5), ("storm", 6), ("hadoop", 2))
sc.parallelize(list).reduceByKey(_ + _).foreach(println)
//输出
(spark,8)
(hadoop,4)
(storm,6)
1.12 sortBy & sortByKey
按照键进行排序:
val list01 = List((100, "hadoop"), (90, "spark"), (120, "storm"))
sc.parallelize(list01).sortByKey(ascending = false).foreach(println)
// 输出
(120,storm)
(90,spark)
(100,hadoop)
按照指定元素进行排序:
val list02 = List(("hadoop",100), ("spark",90), ("storm",120))
sc.parallelize(list02).sortBy(x=>x._2,ascending=false).foreach(println)
// 输出
(storm,120)
(hadoop,100)
(spark,90)
1.13 join
在一个 (K, V) 和 (K, W) 类型的 Dataset 上调用时,返回一个 (K, (V, W)) 的 Dataset,等价于内连接操作。如果想要执行外连接,可以使用 leftOuterJoin
, rightOuterJoin
和 fullOuterJoin
等算子。
val list01 = List((1, "student01"), (2, "student02"), (3, "student03"))
val list02 = List((1, "teacher01"), (2, "teacher02"), (3, "teacher03"))
sc.parallelize(list01).join(sc.parallelize(list02)).foreach(println)
// 输出
(1,(student01,teacher01))
(3,(student03,teacher03))
(2,(student02,teacher02))
1.14 cogroup
在一个 (K, V) 对的 Dataset 上调用时,返回多个类型为 (K, (Iterable<V>, Iterable<W>)) 的元组所组成的 Dataset。
val list01 = List((1, "a"),(1, "a"), (2, "b"), (3, "e"))
val list02 = List((1, "A"), (2, "B"), (3, "E"))
val list03 = List((1, "[ab]"), (2, "[bB]"), (3, "eE"),(3, "eE"))
sc.parallelize(list01).cogroup(sc.parallelize(list02),sc.parallelize(list03)).foreach(println)
// 输出: 同一个 RDD 中的元素先按照 key 进行分组,然后再对不同 RDD 中的元素按照 key 进行分组
(1,(CompactBuffer(a, a),CompactBuffer(A),CompactBuffer([ab])))
(3,(CompactBuffer(e),CompactBuffer(E),CompactBuffer(eE, eE)))
(2,(CompactBuffer(b),CompactBuffer(B),CompactBuffer([bB])))
1.15 cartesian
计算笛卡尔积:
val list1 = List("A", "B", "C")
val list2 = List(1, 2, 3)
sc.parallelize(list1).cartesian(sc.parallelize(list2)).foreach(println)
//输出笛卡尔积
(A,1)
(A,2)
(A,3)
(B,1)
(B,2)
(B,3)
(C,1)
(C,2)
(C,3)
1.16 aggregateByKey
当调用(K,V)对的数据集时,返回(K,U)对的数据集,其中使用给定的组合函数和 zeroValue 聚合每个键的值。与 groupByKey
类似,reduce 任务的数量可通过第二个参数 numPartitions
进行配置。示例如下:
// 为了清晰,以下所有参数均使用具名传参
val list = List(("hadoop", 3), ("hadoop", 2), ("spark", 4), ("spark", 3), ("storm", 6), ("storm", 8))
sc.parallelize(list,numSlices = 2).aggregateByKey(zeroValue = 0,numPartitions = 3)(
seqOp = math.max(_, _),
combOp = _ + _
).collect.foreach(println)
//输出结果:
(hadoop,3)
(storm,8)
(spark,7)
这里使用了 numSlices = 2
指定 aggregateByKey 父操作 parallelize 的分区数量为 2,其执行流程如下:
基于同样的执行流程,如果 numSlices = 1
,则意味着只有输入一个分区,则其最后一步 combOp 相当于是无效的,执行结果为:
(hadoop,3)
(storm,8)
(spark,4)
同样的,如果每个单词对一个分区,即 numSlices = 6
,此时相当于求和操作,执行结果为:
(hadoop,5)
(storm,14)
(spark,7)
aggregateByKey(zeroValue = 0,numPartitions = 3)
的第二个参数 numPartitions
决定的是输出 RDD 的分区数量,想要验证这个问题,可以对上面代码进行改写,使用 getNumPartitions
方法获取分区数量:
sc.parallelize(list,numSlices = 6).aggregateByKey(zeroValue = 0,numPartitions = 3)(
seqOp = math.max(_, _),
combOp = _ + _
).getNumPartitions
二、Action
Spark 常用的 Action 算子如下:
Action(动作) | Meaning(含义) |
---|---|
reduce(func) | 使用函数func执行归约操作 |
collect() | 以一个 array 数组的形式返回 dataset 的所有元素,适用于小结果集。 |
count() | 返回 dataset 中元素的个数。 |
first() | 返回 dataset 中的第一个元素,等价于 take(1)。 |
take(n) | 将数据集中的前 n 个元素作为一个 array 数组返回。 |
takeSample(withReplacement, num, [seed]) | 对一个 dataset 进行随机抽样 |
takeOrdered(n, [ordering]) | 按自然顺序(natural order)或自定义比较器(custom comparator)排序后返回前 n 个元素。只适用于小结果集,因为所有数据都会被加载到驱动程序的内存中进行排序。 |
saveAsTextFile(path) | 将 dataset 中的元素以文本文件的形式写入本地文件系统、HDFS 或其它 Hadoop 支持的文件系统中。Spark 将对每个元素调用 toString 方法,将元素转换为文本文件中的一行记录。 |
saveAsSequenceFile(path) | 将 dataset 中的元素以 Hadoop SequenceFile 的形式写入到本地文件系统、HDFS 或其它 Hadoop 支持的文件系统中。该操作要求 RDD 中的元素需要实现 Hadoop 的 Writable 接口。对于 Scala 语言而言,它可以将 Spark 中的基本数据类型自动隐式转换为对应 Writable 类型。(目前仅支持 Java and Scala) |
saveAsObjectFile(path) | 使用 Java 序列化后存储,可以使用 SparkContext.objectFile() 进行加载。(目前仅支持 Java and Scala) |
countByKey() | 计算每个键出现的次数。 |
foreach(func) | 遍历 RDD 中每个元素,并对其执行fun函数 |
2.1 reduce
使用函数func执行归约操作:
val list = List(1, 2, 3, 4, 5)
sc.parallelize(list).reduce((x, y) => x + y)
sc.parallelize(list).reduce(_ + _)
// 输出 15
2.2 takeOrdered
按自然顺序(natural order)或自定义比较器(custom comparator)排序后返回前 n 个元素。需要注意的是 takeOrdered
使用隐式参数进行隐式转换,以下为其源码。所以在使用自定义排序时,需要继承 Ordering[T]
实现自定义比较器,然后将其作为隐式参数引入。
def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T] = withScope {
.........
}
自定义规则排序:
// 继承 Ordering[T],实现自定义比较器,按照 value 值的长度进行排序
class CustomOrdering extends Ordering[(Int, String)] {
override def compare(x: (Int, String), y: (Int, String)): Int
= if (x._2.length > y._2.length) 1 else -1
}
val list = List((1, "hadoop"), (1, "storm"), (1, "azkaban"), (1, "hive"))
// 引入隐式默认值
implicit val implicitOrdering = new CustomOrdering
sc.parallelize(list).takeOrdered(5)
// 输出: Array((1,hive), (1,storm), (1,hadoop), (1,azkaban)
2.3 countByKey
计算每个键出现的次数:
val list = List(("hadoop", 10), ("hadoop", 10), ("storm", 3), ("storm", 3), ("azkaban", 1))
sc.parallelize(list).countByKey()
// 输出: Map(hadoop -> 2, storm -> 2, azkaban -> 1)
2.4 saveAsTextFile
将 dataset 中的元素以文本文件的形式写入本地文件系统、HDFS 或其它 Hadoop 支持的文件系统中。Spark 将对每个元素调用 toString 方法,将元素转换为文本文件中的一行记录。
val list = List(("hadoop", 10), ("hadoop", 10), ("storm", 3), ("storm", 3), ("azkaban", 1))
sc.parallelize(list).saveAsTextFile("/usr/file/temp")
参考资料
更多大数据系列文章可以参见 GitHub 开源项目: 大数据入门指南
Spark 系列(四)—— RDD常用算子详解的更多相关文章
- Spark学习之路(四)—— RDD常用算子详解
一.Transformation spark常用的Transformation算子如下表: Transformation算子 Meaning(含义) map(func) 对原RDD中每个元素运用 fu ...
- Spark Core核心----RDD常用算子编程
1.RDD常用操作2.Transformations算子3.Actions算子4.SparkRDD案例实战 1.Transformations算子(lazy) 含义:create a new data ...
- SAP ECC6安装系列四:安装过程详解
原作者博客 http://www.cnblogs.com/Michael_z/ ======================================== 续接上篇,我们终于按下了 “Next” ...
- Spring系列(四):Spring AOP详解和实现方式(xml配置和注解配置)
参考文章:http://www.cnblogs.com/hongwz/p/5764917.html 一.什么是AOP AOP(Aspect Oriented Programming),即面向切面编程, ...
- Spark:常用transformation及action,spark算子详解
常用transformation及action介绍,spark算子详解 一.常用transformation介绍 1.1 transformation操作实例 二.常用action介绍 2.1 act ...
- Hexo系列(三) 常用命令详解
Hexo 框架可以帮助我们快速创建一个属于自己的博客网站,熟悉 Hexo 框架提供的命令有利于我们管理博客 1.hexo init hexo init 命令用于初始化本地文件夹为网站的根目录 $ he ...
- free命令常用参数详解
free命令常用参数详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 在运维期间我们会经常去查看服务器硬件信息,比如说内存,大家可能知道看内存用“[root@yinzhengji ...
- Android Studio系列教程五--Gradle命令详解与导入第三方包
Android Studio系列教程五--Gradle命令详解与导入第三方包 2015 年 01 月 05 日 DevTools 本文为个人原创,欢迎转载,但请务必在明显位置注明出处!http://s ...
- Spark小课堂Week6 启动日志详解
Spark小课堂Week6 启动日志详解 作为分布式系统,Spark程序是非常难以使用传统方法来进行调试的,所以我们主要的武器是日志,今天会对启动日志进行一下详解. 日志详解 今天主要遍历下Strea ...
随机推荐
- POJ 1741:Tree(树上点分治)
题目链接 题意 给一棵边带权树,问两点之间的距离小于等于K的点对有多少个. 思路 <分治算法在树的路径问题中的应用> 图片转载于http://www.cnblogs.com/Paul-Gu ...
- [常用命令]Git命令
取得Git仓库 初始化一个版本仓库 git init Clone远程版本库 git clone https://github.com/yhj167/yhj167.github.io.git 添加远程版 ...
- JS格式化JSON后的日期
序列化后日期变成了 /Date(1494524134000+0800)\ 这种格式 不能正常显示了 但也不能为了这个吧所有服务的DateTime字段都改成String类型 于是找了一个JS的扩展方法来 ...
- Linux日志系统分析:rsyslog、syslog和klog
参考博客: https://blog.csdn.net/lidonghat/article/details/55004280 https://blog.csdn.net/u012247418/arti ...
- Redis主从复制实现原理
一.Redis2.8之前的版本, 首先redis复制功能分为同步操作和命令传播两个操作 同步操作作于将从服务器的数据库状态更新至主服务器当前所处的数据库状态 命令传播操作则用于在主服务器的数据库状态 ...
- NDK_OVERVIEW翻译
Android NDK Overview Introduction: The Android NDK is a set of tools that allows Android application ...
- 【题解】埃及分数-C++
Description 在古埃及,人们使用单位分数的和(形如1/a的, a是自然数)表示一切有理数. 如:2/3=1/2+1/6,但不允许2/3=1/3+1/3,因为加数中有相同的. 对于一个分数a/ ...
- 个人永久性免费-Excel催化剂功能第64波-多级数据如省市区联动输入,自由配置永不失效
日常使用各大系统过程中,数据录入的规范性一般做得都很不错,本来系统的存在很大范畴就是为了数据和管理的规范性.在Excel环境中,想得到规范性的数据录入,除非是自行对数据有很深的认识,知道哪些数据是脏乱 ...
- 个人永久性免费-Excel催化剂功能第45波-逻辑判断函数增强
自定义函数的最大的作用是可以按需定制,在Excel的原生函数不提供的场景时,传统方法需要使用大量的嵌套函数去实现,实在太累,今天Excel催化剂再次送上一波绝对十分常用的函数逻辑判断类函数给大家使用! ...
- InstantiationException:mybatis.spring.transaction.SpringManagedTransactionFactory
问题表现 Error creating bean with name 'sqlSessionFactory' Invocation of init method failed; nested exce ...