网格弹簧质点系统模拟(Spring-Mass System by Fast Method)附源码(转载)
转载: https://www.cnblogs.com/shushen/p/5311828.html
弹簧质点模型的求解方法包括显式欧拉积分和隐式欧拉积分等方法,其中显式欧拉积分求解快速,但积分步长小,两个可视帧之间需要多次积分,而隐式欧拉积分则需要求解线性方程组,但其稳定性好,能够取较大的积分步长。[Liu et al. 2007]文章提出了一种弹簧质点模型的求解方法,它将隐式欧拉积分方法转变为求解最优化问题,并采用迭代分步优化的方法来达到最优解。相比隐式欧拉积分,该方法计算快速,并且精度在可接受范围内。
弹簧质点模型的隐式表达方式如下:
(1)
(2)
其中:qn和vn分别代表tn时刻质点的位置和速度,f(qn)为tn时刻质点所受到的力,M为质点的质量,h为步长。
利用式(1)我们可以得到:
(3)
(4)
将式(3)减式(4)并与式(2)结合得到:
(5)
记x = qn+1,y = 2qn – qn-1,式(5)可以变化为:
(6)
式(6)的解其实对应于如下函数的临界点:
(7)
于是弹簧质点模型问题可以变化为最优化问题minx g(x),即最小化函数g(x)。
函数E(x)中最重要的部分是弹簧势能,根据Hooke定律,可以推导得到两个质点间弹簧的势能为:
(8)
其中:k为弹簧的弹性系数,r为弹簧的自然长度。
因此弹簧质点模型中弹簧的整体势能也可以变化为最优化问题,即最小化如下函数:
(9)
其中:L = A·K·AT,J = A·K,式中A∈Rm×s(m为质点数量,s为弹簧数量),并且Ai1,i=1,Ai2,i= -1,K∈Rm×m为对角矩阵,Ki,i = ki。
如果考虑其他外力(如重力等),那么函数E(x)的表达式为:
(10)
其中:是所有弹簧为自然长度时的方向。
将函数E(x)的表达式(10)代入式(7),整理后得到最终的优化表达式:
(11)
对于上述优化问题,可以分两步进行,将前一时刻的质点位置作为初始值x,首先固定x优化d,然后固定d优化x,然后重复上述迭代步骤直到满足设定的迭代步数。
function [X, V] = spring_mass_fast(X0, V0, E, b, bc, R, h)
% This code implements algorithm of the following paper:
% "Fast Simulation of Mass-Spring Systems" m = size(X0,1); % vertex number
s = size(E,1); % spring number if ~exist('R', 'var')
R = normrow(X0(E(:,1),:) - X0(E(:,2),:));
end damping = 0.02;
drag = 1 - damping;
stiffness = 1e1;
K = stiffness*ones(s,1);
mass = 0.01;
M = diag(mass*ones(m,1));
g = [0 0 -9.8];
fext = repmat(mass*g, [m,1]); A = sparse(E,[1:s;1:s]',repmat([1,-1],s,1),m,s); L = A*diag(K)*A';
J = A*diag(K); X = X0;
iter = 0;
max_iter = 10;
while true
% step1: Fix X and find D
D = X(E(:,1),:) - X(E(:,2),:);
D = bsxfun(@times, D, R./normrow(D)); % step2: Fix D and find X
X = solve_equation(M + h^2*L, h^2*(fext + J*D) + M*(X0 + V0*h), b, bc); iter = iter + 1;
if iter == max_iter
break;
end
end
V = drag*(X - X0)/h;
end
相关:
弹簧质点系统(Euler Integration):http://www.cnblogs.com/shushen/p/5473264.html
弹簧质点系统(Verlet Integration):http://www.cnblogs.com/shushen/p/5394431.html
参考文献:
[1] Tiantian Liu, Adam W. Bargteil, James F. O'Brien, and Ladislav Kavan. 2013. Fast simulation of mass-spring systems. ACM Trans. Graph. 32, 6, Article 214 (November 2013), 7 pages.
网格弹簧质点系统模拟(Spring-Mass System by Fast Method)附源码(转载)的更多相关文章
- 网格弹簧质点系统模拟(Spring-Mass System by Fast Method)附源码
弹簧质点模型的求解方法包括显式欧拉积分和隐式欧拉积分等方法,其中显式欧拉积分求解快速,但积分步长小,两个可视帧之间需要多次积分,而隐式欧拉积分则需要求解线性方程组,但其稳定性好,能够取较大的积分步长. ...
- 网格弹簧质点系统模拟(Spring-Mass System by Verlet Integration)附源码
模拟物体变形最简单的方法就是采用弹簧质点系统(Spring-Mass System),由于模型简单并且实用,它已被广泛应用于服饰.毛发以及弹性固体的动态模拟.对于三角网格而言,弹簧质点系统将网格中的顶 ...
- 网格弹簧质点系统模拟(Spring-Mass System by Euler Integration)
弹簧质点模型是利用牛顿运动定律来模拟物体变形的方法.如下图所示,该模型是一个由m×n个虚拟质点组成的网格,质点之间用无质量的.自然长度不为零的弹簧连接.其连接关系有以下三种: 1.连接质点[i, j] ...
- Spring AOP实现方式三【附源码】
注解AOP实现 源码结构: 1.首先我们新建一个接口,love 谈恋爱接口. package com.spring.aop; /** * 谈恋爱接口 * * @author Administrator ...
- Spring AOP实现方式二【附源码】
自动代理模式[和我们说的方式一 配置 和 测试调用不一样哦~~~] 纯POJO切面 源码结构: 1.首先我们新建一个接口,love 谈恋爱接口. package com.spring.aop; /* ...
- Spring AOP实现方式一【附源码】
基本代理模式 纯POJO切面 源码结构: 1.首先我们新建一个接口,love 谈恋爱接口. package com.spring.aop; /** * 谈恋爱接口 * * @author Admin ...
- 快速开发架构Spring Boot 从入门到精通 附源码
导读 篇幅较长,干货十足,阅读需花费点时间.珍惜原创,转载请注明出处,谢谢! Spring Boot基础 Spring Boot简介 Spring Boot是由Pivotal团队提供的全新框架,其设计 ...
- Java Web开发框架Spring+Hibernate整合效果介绍(附源码)
最近花了一些时间整合了一个SpringMVC+springAOP+spring security+Hibernate的一套框架,之前只专注于.NET的软件架构设计,并没有接触过Java EE,好在有经 ...
- Java Web开发框架Spring+Hibernate整合效果介绍(附源码)(已过期,有更好的)
最近花了一些时间整合了一个SpringMVC+springAOP+spring security+Hibernate的一套框架,之前只专注于.NET的软件架构设计,并没有接触过Java EE,好在有经 ...
随机推荐
- java基础(32):类加载、反射
1. 类加载器 1.1 类的加载 当程序要使用某个类时,如果该类还未被加载到内存中,则系统会通过加载,连接,初始化三步来实现对这个类进行初始化. 加载 就是指将class文件读入内存,并为之创建一个C ...
- struts图片上传
文件上传:三种上传方案1.上传到tomcat服务器 上传图片的存放位置与tomcat服务器的耦合度太高2.上传到指定文件目录,添加服务器与真实目录的映射关系,从而解耦上传文件与tomcat的关系文件服 ...
- 敏捷软件开发_UML<一>
敏捷软件开发_UML 所看书籍是:敏捷软件开发_原则.模式与实践_C#版(美)马丁著,这本书写的非常棒,感谢作者.该归纳总结的过程按照我读的顺序写. UML 在建造桥梁,零件,自动化设备之前需要建 ...
- QML::常用属性
Item 属性: Item 类型比较特殊,因为它是所有其他可视化类型的基类型. Qt Quick中所有可视化类型都基于 Item. Item 对象本身没有一个可视化的外观,但是它定义了可视化项目中所有 ...
- c++ 模板类,方法返回值类型是typedef出来的,或者是auto,那么此方法在类外面如何定义?
c++ 模板类,方法返回值类型是typedef出来的,或者是auto,那么此方法在类外面如何定义? 比如方法max1的返回值是用typedef定义出来的mint,那么在类外如何定义这个方法呢? tem ...
- MASK-RCNN(1)
MASK-RCNN是一个多用途的网络,可以用来做目标检测,实例分割或者人体姿态识别.主要结构如下. 简单的说,就是首先用Faster-RCNN获得ROI,再进行ROI Align,然后输出ROI的分类 ...
- 自定义MVC三
完成t_mvc_book表的增删改查1.通用分页的jar.自定义mvc框架.自定义标签 导入jar.导入之前写好的pageTag.自定义mvc.xml pageTag private static f ...
- react中界面跳转 A界面跳B界面,返回A界面,A界面状态保持不变 redux的state方法
在上一篇文章中说过了react中界面A跳到B,返回A,A界面状态保持不变,上篇中使用的是传统的localStorage方法,现在来使用第二种redux的state方法来实现这个功能 现在我刚接触red ...
- 【HDU1814】Peaceful Commission(2-sat+暴力染色)
传送门 \(2-sat\)的模板题,首先得出题目中的二元关系为:对于有矛盾的\(x_i,x_j\),至多选择一个,那么连边\(x_i\rightarrow x_j',x_j\rightarrow x_ ...
- 树型DP(2)
声明 https://blog.csdn.net/no1_terminator/article/details/77824790 参考课件和讲授来自Accelerator 找树的直径 树的直径定义为一 ...