pandas 之 时间序列索引
import numpy as np
import pandas as pd
引入
A basic kind of time series object in pandas is a Series indexed by timestamps, which is often represented external to pandas as Python string or datetime objects:
from datetime import datetime
dates = [
datetime(2011, 1, 2),
datetime(2011, 1, 5),
datetime(2011, 1, 7),
datetime(2011, 1, 8),
datetime(2011, 1, 10),
datetime(2011, 1, 12)
]
ts = pd.Series(np.random.randn(6), index=dates)
ts
2011-01-02 0.825502
2011-01-05 0.453766
2011-01-07 0.077024
2011-01-08 -1.320742
2011-01-10 -1.109912
2011-01-12 -0.469907
dtype: float64
Under the hood, these datetime objects have been put in a DatetimeIndex:
ts.index
DatetimeIndex(['2011-01-02', '2011-01-05', '2011-01-07', '2011-01-08',
'2011-01-10', '2011-01-12'],
dtype='datetime64[ns]', freq=None)
Like other Series, arithmetic operations between differently indexed time series auto-matically align(自动对齐) on the dates:
ts + ts[::2]
2011-01-02 1.651004
2011-01-05 NaN
2011-01-07 0.154049
2011-01-08 NaN
2011-01-10 -2.219823
2011-01-12 NaN
dtype: float64
Recall that ts[::2] selects every second element in ts:
pandas stores timestamp using NumPy's datetime64 data type the nanosecond resolution:
ts.index.dtype
dtype('<M8[ns]')
Scalar values from a DatetimeIndex are Timestamp object:
stamp = ts.index[0]
stamp
Timestamp('2011-01-02 00:00:00')
A Timestamp can be substituted(被替代) anywhere you would use a datetime object. Additionally, it can store frequency information(if any) and understands how to do time zone conversions and other kinds of manipulations. More on both of these things later.
(各种转换操作, 对于时间序列)
索引-切片
Time series behaves like any other pandas.Series when you are indexing and selecting data based on label:
stamp = ts.index[2]
ts[stamp]
0.0770243257021936
As a convenience, you can also pass a string that is interpretable as a date:
ts['1/10/2011']
-1.109911691867437
ts['20110110']
-1.109911691867437
For longer time series, a year or only a year and month can be passed to easly select slices of data:
longer_ts = pd.Series(np.random.randn(1000),
index=pd.date_range('1/1/2000', periods=1000))
longer_ts[:5]
2000-01-01 0.401394
2000-01-02 0.720214
2000-01-03 0.488505
2000-01-04 0.446179
2000-01-05 -2.129299
Freq: D, dtype: float64
longer_ts['2001'][:5]
2001-01-01 0.315472
2001-01-02 0.796386
2001-01-03 0.611503
2001-01-04 0.980799
2001-01-05 0.184401
Freq: D, dtype: float64
Here, the string '2001' is interpreted as a year and selects that time period. This also works if you speicify the month:
longer_ts['2001-05'][:5]
2001-05-01 0.439009
2001-05-02 -0.304236
2001-05-03 0.603268
2001-05-04 -0.726460
2001-05-05 -0.521669
Freq: D, dtype: float64
"Slicing with detetime objects works as well"
ts[datetime(2011, 1, 7):]
'Slicing with detetime objects works as well'
2011-01-07 0.077024
2011-01-08 -1.320742
2011-01-10 -1.109912
2011-01-12 -0.469907
dtype: float64
Because most time series data is ordered chrnologically(按年代顺序的), you can slice with time-stamps not contained in a time series to perform a range query:
ts
2011-01-02 0.825502
2011-01-05 0.453766
2011-01-07 0.077024
2011-01-08 -1.320742
2011-01-10 -1.109912
2011-01-12 -0.469907
dtype: float64
ts['1/6/2011': '1/11/2011']
2011-01-07 0.077024
2011-01-08 -1.320742
2011-01-10 -1.109912
dtype: float64
As before, you can pass either a string date, datetime or timestamp. Remember that slicing in this manner produces views on the source time series like slicing NumPy arrays. This means that no data is copied and modifications on the slice will be reflected in the orginal data.
There is an equivalent instance method,truncate that slices a Series between two dates:
ts.truncate(after='1/9/2011')
2011-01-02 0.825502
2011-01-05 0.453766
2011-01-07 0.077024
2011-01-08 -1.320742
dtype: float64
All of this holds true for DataFrame as well, indexing on its rows:
# periods: 多少个, freq: 间隔
dates = pd.date_range('1/1/2000', periods=100, freq='W-WED')
long_df = pd.DataFrame(np.random.randn(100, 4),
index=dates,
columns=['Colorado', 'Texas', 'New York', 'Ohio'])
long_df.loc['5-2001']
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
Colorado | Texas | New York | Ohio | |
---|---|---|---|---|
2001-05-02 | 0.972317 | 0.407519 | 0.628906 | 1.995901 |
2001-05-09 | 0.299961 | -1.208505 | 1.019247 | 2.244728 |
2001-05-16 | 0.628163 | -0.716498 | 0.621912 | 1.257635 |
2001-05-23 | 0.508852 | 0.753517 | -0.793127 | 0.273496 |
2001-05-30 | -1.443141 | -0.878143 | -0.680227 | 0.455401 |
重复索引
- ts.is_unique
- ts.groupby(level=0)
In some applications, there may be multiple data observations falling on a particular timestamp.Here is an example:
dates = pd.DatetimeIndex(['1/1/2000', '1/2/2000',
'1/2/2000', '1/2/2000', '1/3/2000'
])
dup_ts = pd.Series(np.arange(5), index=dates)
dup_ts
2000-01-01 0
2000-01-02 1
2000-01-02 2
2000-01-02 3
2000-01-03 4
dtype: int32
We can tell that the index is not unique by checking its is_unique property:
dup_ts.index.is_unique
False
Indexing into this time series will now either produce scalar values or slice depending on whether a timestamp is duplicated:
dup_ts['1/3/2000'] # not duplicated
4
dup_ts['1/2/2000'] # duplicated
2000-01-02 1
2000-01-02 2
2000-01-02 3
dtype: int32
Suppose you wanted to aggregate the data having non-unique timestamps. One way to do this is use groupby and pass level=0
grouped = dup_ts.groupby(level=0) # 没有level 会报错, 默认是None
grouped.mean()
2000-01-01 0
2000-01-02 2
2000-01-03 4
dtype: int32
grouped.count()
2000-01-01 1
2000-01-02 3
2000-01-03 1
dtype: int64
pandas 之 时间序列索引的更多相关文章
- 笔记 | pandas之时间序列学习随笔1
1. 时间序列自动生成 ts = pd.Series(np.arange(1, 901), index=pd.date_range('2010-1-1', periods=900)) 最终生成了从20 ...
- pandas处理时间序列(2):DatetimeIndex、索引和选择、含有重复索引的时间序列、日期范围与频率和移位、时间区间和区间算术
一.时间序列基础 1. 时间戳索引DatetimeIndex 生成20个DatetimeIndex from datetime import datetime dates = pd.date_rang ...
- pandas处理时间序列(3):重采样与频率转换
五.重采样与频率转换 1. resample方法 rng = pd.date_range('1/3/2019',periods=1000,freq='D') rng 2. 降采样 (1)resampl ...
- 03. Pandas 2| 时间序列
1.时间模块:datetime datetime模块,主要掌握:datetime.date(), datetime.datetime(), datetime.timedelta() 日期解析方法:pa ...
- pandas处理时间序列(1):pd.Timestamp()、pd.Timedelta()、pd.datetime( )、 pd.Period()、pd.to_timestamp()、datetime.strftime()、pd.to_datetime( )、pd.to_period()
Pandas库是处理时间序列的利器,pandas有着强大的日期数据处理功能,可以按日期筛选数据.按日期显示数据.按日期统计数据. pandas的实际类型主要分为: timestamp(时间戳) ...
- pandas之时间序列(data_range)、重采样(resample)、重组时间序列(PeriodIndex)
1.data_range生成时间范围 a) pd.date_range(start=None, end=None, periods=None, freq='D') start和end以及freq配合能 ...
- pandas处理时间序列(4): 移动窗口函数
六.移动窗口函数 移动窗口和指数加权函数类别如↓: rolling_mean 移动窗口的均值 pandas.rolling_mean(arg, window, min_periods=None, fr ...
- pandas之时间序列
Pandas中提供了许多用来处理时间格式文本的方法,包括按不同方法生成一个时间序列,修改时间的格式,重采样等等. 按不同的方法生成时间序列 In [7]: import pandas as pd # ...
- pandas基础用法——索引
# -*- coding: utf-8 -*- # Time : 2016/11/28 15:14 # Author : XiaoDeng # version : python3.5 # Softwa ...
随机推荐
- MYSQL第二课
创建数据库: 输入:CREATE DATABASE itcase;计算机输出: Query OK, 1 row affected 查看数据库:输入:SHOW DATABASES;计算机输出: +--- ...
- [PHP] time_wait与长连接短连接
服务端上查看tcp连接的建立情况,直接使用netstat命令来统计,看到了很多的time_wait状态的连接.这些状态是tcp连接中主动关闭的一方会出现的状态.该服务器是nginx的webserver ...
- fiddler---Fiddler工具栏功能介绍
前几篇简单的介绍了Fiddler的功能,对于工具栏的操作只是简单了解,今天写一篇工具栏功能介绍和操作. 工具栏功能介绍 工具栏内容 工具栏依次是:会话保存,数据重放(Replay),转到(GO),数据 ...
- /usr/lib64/python2.7/subprocess.py", line 1327, in _execute_child
https://www.jb51.net/article/142787.htm gn gn 问题如何解决?????
- 环形链表 II
给定一个链表,返回链表开始入环的第一个节点. 如果链表无环,则返回 null. 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始). 如果 pos 是 - ...
- Rest微服务案例(二)
1. 创建父工程 Maven Project 新建父工程microservicecloud,packaging是pom模式,pom.xml内容如下: <!-- SpringBoot父依赖 --& ...
- CF1005F Berland and the Shortest Paths 最短路树计数
问题描述 LG-CF1005F 题解 由题面显然可得,所求即最短路树. 所以跑出最短路树,计数,输出方案即可. \(\mathrm{Code}\) #include<bits/stdc++.h& ...
- 图像检索——VLAD
今天主要回顾一下关于图像检索中VLAD(Vector of Aggragate Locally Descriptor)算法,免得时间一长都忘记了.关于源码有时间就整理整理. 一.简介 虽然现在深度学习 ...
- 【转】python中的闭包
转自:http://www.cnblogs.com/ma6174/archive/2013/04/15/3022548.html python中的闭包 什么是闭包? 简单说,闭包就是根据不同的配置信息 ...
- 数据仓库003 - 复习Linux shell命令 - 用户用户组 sudo 权限 du-sh find
一.用户用户组 [root@localhost ~]# ll /usr/sbin/user* -rwxr-x--- root root -- /usr/sbin/useradd -rwxr-x--- ...