pandas 之 时间序列索引
import numpy as np
import pandas as pd
引入
A basic kind of time series object in pandas is a Series indexed by timestamps, which is often represented external to pandas as Python string or datetime objects:
from datetime import datetime
dates = [
datetime(2011, 1, 2),
datetime(2011, 1, 5),
datetime(2011, 1, 7),
datetime(2011, 1, 8),
datetime(2011, 1, 10),
datetime(2011, 1, 12)
]
ts = pd.Series(np.random.randn(6), index=dates)
ts
2011-01-02 0.825502
2011-01-05 0.453766
2011-01-07 0.077024
2011-01-08 -1.320742
2011-01-10 -1.109912
2011-01-12 -0.469907
dtype: float64
Under the hood, these datetime objects have been put in a DatetimeIndex:
ts.index
DatetimeIndex(['2011-01-02', '2011-01-05', '2011-01-07', '2011-01-08',
'2011-01-10', '2011-01-12'],
dtype='datetime64[ns]', freq=None)
Like other Series, arithmetic operations between differently indexed time series auto-matically align(自动对齐) on the dates:
ts + ts[::2]
2011-01-02 1.651004
2011-01-05 NaN
2011-01-07 0.154049
2011-01-08 NaN
2011-01-10 -2.219823
2011-01-12 NaN
dtype: float64
Recall that ts[::2] selects every second element in ts:
pandas stores timestamp using NumPy's datetime64 data type the nanosecond resolution:
ts.index.dtype
dtype('<M8[ns]')
Scalar values from a DatetimeIndex are Timestamp object:
stamp = ts.index[0]
stamp
Timestamp('2011-01-02 00:00:00')
A Timestamp can be substituted(被替代) anywhere you would use a datetime object. Additionally, it can store frequency information(if any) and understands how to do time zone conversions and other kinds of manipulations. More on both of these things later.
(各种转换操作, 对于时间序列)
索引-切片
Time series behaves like any other pandas.Series when you are indexing and selecting data based on label:
stamp = ts.index[2]
ts[stamp]
0.0770243257021936
As a convenience, you can also pass a string that is interpretable as a date:
ts['1/10/2011']
-1.109911691867437
ts['20110110']
-1.109911691867437
For longer time series, a year or only a year and month can be passed to easly select slices of data:
longer_ts = pd.Series(np.random.randn(1000),
index=pd.date_range('1/1/2000', periods=1000))
longer_ts[:5]
2000-01-01 0.401394
2000-01-02 0.720214
2000-01-03 0.488505
2000-01-04 0.446179
2000-01-05 -2.129299
Freq: D, dtype: float64
longer_ts['2001'][:5]
2001-01-01 0.315472
2001-01-02 0.796386
2001-01-03 0.611503
2001-01-04 0.980799
2001-01-05 0.184401
Freq: D, dtype: float64
Here, the string '2001' is interpreted as a year and selects that time period. This also works if you speicify the month:
longer_ts['2001-05'][:5]
2001-05-01 0.439009
2001-05-02 -0.304236
2001-05-03 0.603268
2001-05-04 -0.726460
2001-05-05 -0.521669
Freq: D, dtype: float64
"Slicing with detetime objects works as well"
ts[datetime(2011, 1, 7):]
'Slicing with detetime objects works as well'
2011-01-07 0.077024
2011-01-08 -1.320742
2011-01-10 -1.109912
2011-01-12 -0.469907
dtype: float64
Because most time series data is ordered chrnologically(按年代顺序的), you can slice with time-stamps not contained in a time series to perform a range query:
ts
2011-01-02 0.825502
2011-01-05 0.453766
2011-01-07 0.077024
2011-01-08 -1.320742
2011-01-10 -1.109912
2011-01-12 -0.469907
dtype: float64
ts['1/6/2011': '1/11/2011']
2011-01-07 0.077024
2011-01-08 -1.320742
2011-01-10 -1.109912
dtype: float64
As before, you can pass either a string date, datetime or timestamp. Remember that slicing in this manner produces views on the source time series like slicing NumPy arrays. This means that no data is copied and modifications on the slice will be reflected in the orginal data.
There is an equivalent instance method,truncate that slices a Series between two dates:
ts.truncate(after='1/9/2011')
2011-01-02 0.825502
2011-01-05 0.453766
2011-01-07 0.077024
2011-01-08 -1.320742
dtype: float64
All of this holds true for DataFrame as well, indexing on its rows:
# periods: 多少个, freq: 间隔
dates = pd.date_range('1/1/2000', periods=100, freq='W-WED')
long_df = pd.DataFrame(np.random.randn(100, 4),
index=dates,
columns=['Colorado', 'Texas', 'New York', 'Ohio'])
long_df.loc['5-2001']
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
Colorado | Texas | New York | Ohio | |
---|---|---|---|---|
2001-05-02 | 0.972317 | 0.407519 | 0.628906 | 1.995901 |
2001-05-09 | 0.299961 | -1.208505 | 1.019247 | 2.244728 |
2001-05-16 | 0.628163 | -0.716498 | 0.621912 | 1.257635 |
2001-05-23 | 0.508852 | 0.753517 | -0.793127 | 0.273496 |
2001-05-30 | -1.443141 | -0.878143 | -0.680227 | 0.455401 |
重复索引
- ts.is_unique
- ts.groupby(level=0)
In some applications, there may be multiple data observations falling on a particular timestamp.Here is an example:
dates = pd.DatetimeIndex(['1/1/2000', '1/2/2000',
'1/2/2000', '1/2/2000', '1/3/2000'
])
dup_ts = pd.Series(np.arange(5), index=dates)
dup_ts
2000-01-01 0
2000-01-02 1
2000-01-02 2
2000-01-02 3
2000-01-03 4
dtype: int32
We can tell that the index is not unique by checking its is_unique property:
dup_ts.index.is_unique
False
Indexing into this time series will now either produce scalar values or slice depending on whether a timestamp is duplicated:
dup_ts['1/3/2000'] # not duplicated
4
dup_ts['1/2/2000'] # duplicated
2000-01-02 1
2000-01-02 2
2000-01-02 3
dtype: int32
Suppose you wanted to aggregate the data having non-unique timestamps. One way to do this is use groupby and pass level=0
grouped = dup_ts.groupby(level=0) # 没有level 会报错, 默认是None
grouped.mean()
2000-01-01 0
2000-01-02 2
2000-01-03 4
dtype: int32
grouped.count()
2000-01-01 1
2000-01-02 3
2000-01-03 1
dtype: int64
pandas 之 时间序列索引的更多相关文章
- 笔记 | pandas之时间序列学习随笔1
1. 时间序列自动生成 ts = pd.Series(np.arange(1, 901), index=pd.date_range('2010-1-1', periods=900)) 最终生成了从20 ...
- pandas处理时间序列(2):DatetimeIndex、索引和选择、含有重复索引的时间序列、日期范围与频率和移位、时间区间和区间算术
一.时间序列基础 1. 时间戳索引DatetimeIndex 生成20个DatetimeIndex from datetime import datetime dates = pd.date_rang ...
- pandas处理时间序列(3):重采样与频率转换
五.重采样与频率转换 1. resample方法 rng = pd.date_range('1/3/2019',periods=1000,freq='D') rng 2. 降采样 (1)resampl ...
- 03. Pandas 2| 时间序列
1.时间模块:datetime datetime模块,主要掌握:datetime.date(), datetime.datetime(), datetime.timedelta() 日期解析方法:pa ...
- pandas处理时间序列(1):pd.Timestamp()、pd.Timedelta()、pd.datetime( )、 pd.Period()、pd.to_timestamp()、datetime.strftime()、pd.to_datetime( )、pd.to_period()
Pandas库是处理时间序列的利器,pandas有着强大的日期数据处理功能,可以按日期筛选数据.按日期显示数据.按日期统计数据. pandas的实际类型主要分为: timestamp(时间戳) ...
- pandas之时间序列(data_range)、重采样(resample)、重组时间序列(PeriodIndex)
1.data_range生成时间范围 a) pd.date_range(start=None, end=None, periods=None, freq='D') start和end以及freq配合能 ...
- pandas处理时间序列(4): 移动窗口函数
六.移动窗口函数 移动窗口和指数加权函数类别如↓: rolling_mean 移动窗口的均值 pandas.rolling_mean(arg, window, min_periods=None, fr ...
- pandas之时间序列
Pandas中提供了许多用来处理时间格式文本的方法,包括按不同方法生成一个时间序列,修改时间的格式,重采样等等. 按不同的方法生成时间序列 In [7]: import pandas as pd # ...
- pandas基础用法——索引
# -*- coding: utf-8 -*- # Time : 2016/11/28 15:14 # Author : XiaoDeng # version : python3.5 # Softwa ...
随机推荐
- nignx环境搭建
国产化 环境可以支持,中标麒麟 龙芯 银河麒麟
- jenkins添加TPS与服务器监控变化曲线图
第一步,首先在测试的脚本中添加你所需要查看的曲线图的监控路径 譬如我想查看TPS变化图 添加hps监控图 添加服务器监控图 把所有jtl文件保存到/opt/workspace/B_Stress_Tes ...
- web的前台、后台、前端、后端
前台:呈现给用户的视觉和基本的操作.后台:用户浏览网页时,我们看不见的后台数据跑动.后台包括前端,后端.前端:对应我们写的html .javascript 等网页语言作用在前端网页.后端:对应jsp. ...
- 日志检索实战 grep sed
日志检索实战 grep sed 参考 sed命令 使用 grep -5 'parttern' inputfile //打印匹配行的前后5行 grep -C 5 'parttern' inputfile ...
- 树莓派4b+linux
用Win32DiskImager烧录系统 先在boot根目录下新建ssh空文件夹来开启ssh功能,否则ssh是关闭的,用putty一直连不上,显示拒绝连接 1.联网: 初次 (实践证明:直接在sd卡根 ...
- 为什么MySQL数据库要用B+树存储索引?
问题:MySQL中存储索引用到的数据结构是B+树,B+树的查询时间跟树的高度有关,是log(n),如果用hash存储,那么查询时间是O(1).既然hash比B+树更快,为什么mysql用B+树来存储索 ...
- jenkins配置自动部署java程序
任务背景 该项目包含4个程序包:a.jar,b.jar,c.jar,d.jar,每次启动前需要修改程序中的配置文件(修改数据源配置),然后按照先后顺序启动. 任务目标 1.利用jenkins拉取代码, ...
- java1.8 AQS AbstractQueuedSynchronizer学习
AQS concurrent并发包中非常重要的顶层锁类,往往用的比较多的是ReentrantLock,然而ReentrantLock的实现依赖AbstractQueuedSynchronizer在到上 ...
- mysql用户与权限操作
本文所有操作均在mysql8.1下验证,mysql5.x部分语句不适用. 1.创建用户 '; # 创建用户test,密码123456,%表示允许在所有主机登陆 用户表为mysql库小的user表,Ho ...
- Eureka服务注册中心错误:com.sun.jersey.api.client.ClientHandlerException: java.net.ConnectException: Connection refused: connect
报错信息 14:43:45.484 [main] INFO com.netflix.discovery.DiscoveryClient - Getting all instance registry ...