import numpy as np
import pandas as pd

引入

A basic kind of time series object in pandas is a Series indexed by timestamps, which is often represented external to pandas as Python string or datetime objects:

from datetime import datetime
dates = [
datetime(2011, 1, 2),
datetime(2011, 1, 5),
datetime(2011, 1, 7),
datetime(2011, 1, 8),
datetime(2011, 1, 10),
datetime(2011, 1, 12)
] ts = pd.Series(np.random.randn(6), index=dates) ts
2011-01-02    0.825502
2011-01-05 0.453766
2011-01-07 0.077024
2011-01-08 -1.320742
2011-01-10 -1.109912
2011-01-12 -0.469907
dtype: float64

Under the hood, these datetime objects have been put in a DatetimeIndex:

ts.index
DatetimeIndex(['2011-01-02', '2011-01-05', '2011-01-07', '2011-01-08',
'2011-01-10', '2011-01-12'],
dtype='datetime64[ns]', freq=None)

Like other Series, arithmetic operations between differently indexed time series auto-matically align(自动对齐) on the dates:

ts + ts[::2]
2011-01-02    1.651004
2011-01-05 NaN
2011-01-07 0.154049
2011-01-08 NaN
2011-01-10 -2.219823
2011-01-12 NaN
dtype: float64

Recall that ts[::2] selects every second element in ts:

pandas stores timestamp using NumPy's datetime64 data type the nanosecond resolution:

ts.index.dtype
dtype('<M8[ns]')

Scalar values from a DatetimeIndex are Timestamp object:

stamp = ts.index[0]

stamp
Timestamp('2011-01-02 00:00:00')

A Timestamp can be substituted(被替代) anywhere you would use a datetime object. Additionally, it can store frequency information(if any) and understands how to do time zone conversions and other kinds of manipulations. More on both of these things later.

(各种转换操作, 对于时间序列)

索引-切片

Time series behaves like any other pandas.Series when you are indexing and selecting data based on label:

stamp = ts.index[2]

ts[stamp]
0.0770243257021936

As a convenience, you can also pass a string that is interpretable as a date:

ts['1/10/2011']
-1.109911691867437
ts['20110110']
-1.109911691867437

For longer time series, a year or only a year and month can be passed to easly select slices of data:

longer_ts = pd.Series(np.random.randn(1000),
index=pd.date_range('1/1/2000', periods=1000)) longer_ts[:5]
2000-01-01    0.401394
2000-01-02 0.720214
2000-01-03 0.488505
2000-01-04 0.446179
2000-01-05 -2.129299
Freq: D, dtype: float64
longer_ts['2001'][:5]
2001-01-01    0.315472
2001-01-02 0.796386
2001-01-03 0.611503
2001-01-04 0.980799
2001-01-05 0.184401
Freq: D, dtype: float64

Here, the string '2001' is interpreted as a year and selects that time period. This also works if you speicify the month:

longer_ts['2001-05'][:5]
2001-05-01    0.439009
2001-05-02 -0.304236
2001-05-03 0.603268
2001-05-04 -0.726460
2001-05-05 -0.521669
Freq: D, dtype: float64
"Slicing with detetime objects works as well"

ts[datetime(2011, 1, 7):]
'Slicing with detetime objects works as well'

2011-01-07    0.077024
2011-01-08 -1.320742
2011-01-10 -1.109912
2011-01-12 -0.469907
dtype: float64

Because most time series data is ordered chrnologically(按年代顺序的), you can slice with time-stamps not contained in a time series to perform a range query:

ts
2011-01-02    0.825502
2011-01-05 0.453766
2011-01-07 0.077024
2011-01-08 -1.320742
2011-01-10 -1.109912
2011-01-12 -0.469907
dtype: float64
ts['1/6/2011': '1/11/2011']
2011-01-07    0.077024
2011-01-08 -1.320742
2011-01-10 -1.109912
dtype: float64

As before, you can pass either a string date, datetime or timestamp. Remember that slicing in this manner produces views on the source time series like slicing NumPy arrays. This means that no data is copied and modifications on the slice will be reflected in the orginal data.

There is an equivalent instance method,truncate that slices a Series between two dates:

ts.truncate(after='1/9/2011')
2011-01-02    0.825502
2011-01-05 0.453766
2011-01-07 0.077024
2011-01-08 -1.320742
dtype: float64

All of this holds true for DataFrame as well, indexing on its rows:

# periods: 多少个, freq: 间隔
dates = pd.date_range('1/1/2000', periods=100, freq='W-WED') long_df = pd.DataFrame(np.random.randn(100, 4),
index=dates,
columns=['Colorado', 'Texas', 'New York', 'Ohio']) long_df.loc['5-2001']

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
Colorado Texas New York Ohio
2001-05-02 0.972317 0.407519 0.628906 1.995901
2001-05-09 0.299961 -1.208505 1.019247 2.244728
2001-05-16 0.628163 -0.716498 0.621912 1.257635
2001-05-23 0.508852 0.753517 -0.793127 0.273496
2001-05-30 -1.443141 -0.878143 -0.680227 0.455401

重复索引

  • ts.is_unique
  • ts.groupby(level=0)

In some applications, there may be multiple data observations falling on a particular timestamp.Here is an example:

dates = pd.DatetimeIndex(['1/1/2000', '1/2/2000',
'1/2/2000', '1/2/2000', '1/3/2000'
]) dup_ts = pd.Series(np.arange(5), index=dates) dup_ts
2000-01-01    0
2000-01-02 1
2000-01-02 2
2000-01-02 3
2000-01-03 4
dtype: int32

We can tell that the index is not unique by checking its is_unique property:

dup_ts.index.is_unique
False

Indexing into this time series will now either produce scalar values or slice depending on whether a timestamp is duplicated:

dup_ts['1/3/2000']  # not duplicated
4
dup_ts['1/2/2000']  # duplicated
2000-01-02    1
2000-01-02 2
2000-01-02 3
dtype: int32

Suppose you wanted to aggregate the data having non-unique timestamps. One way to do this is use groupby and pass level=0

grouped = dup_ts.groupby(level=0)  # 没有level 会报错, 默认是None
grouped.mean()
2000-01-01    0
2000-01-02 2
2000-01-03 4
dtype: int32
grouped.count()
2000-01-01    1
2000-01-02 3
2000-01-03 1
dtype: int64

pandas 之 时间序列索引的更多相关文章

  1. 笔记 | pandas之时间序列学习随笔1

    1. 时间序列自动生成 ts = pd.Series(np.arange(1, 901), index=pd.date_range('2010-1-1', periods=900)) 最终生成了从20 ...

  2. pandas处理时间序列(2):DatetimeIndex、索引和选择、含有重复索引的时间序列、日期范围与频率和移位、时间区间和区间算术

    一.时间序列基础 1. 时间戳索引DatetimeIndex 生成20个DatetimeIndex from datetime import datetime dates = pd.date_rang ...

  3. pandas处理时间序列(3):重采样与频率转换

    五.重采样与频率转换 1. resample方法 rng = pd.date_range('1/3/2019',periods=1000,freq='D') rng 2. 降采样 (1)resampl ...

  4. 03. Pandas 2| 时间序列

    1.时间模块:datetime datetime模块,主要掌握:datetime.date(), datetime.datetime(), datetime.timedelta() 日期解析方法:pa ...

  5. pandas处理时间序列(1):pd.Timestamp()、pd.Timedelta()、pd.datetime( )、 pd.Period()、pd.to_timestamp()、datetime.strftime()、pd.to_datetime( )、pd.to_period()

      Pandas库是处理时间序列的利器,pandas有着强大的日期数据处理功能,可以按日期筛选数据.按日期显示数据.按日期统计数据.   pandas的实际类型主要分为: timestamp(时间戳) ...

  6. pandas之时间序列(data_range)、重采样(resample)、重组时间序列(PeriodIndex)

    1.data_range生成时间范围 a) pd.date_range(start=None, end=None, periods=None, freq='D') start和end以及freq配合能 ...

  7. pandas处理时间序列(4): 移动窗口函数

    六.移动窗口函数 移动窗口和指数加权函数类别如↓: rolling_mean 移动窗口的均值 pandas.rolling_mean(arg, window, min_periods=None, fr ...

  8. pandas之时间序列

    Pandas中提供了许多用来处理时间格式文本的方法,包括按不同方法生成一个时间序列,修改时间的格式,重采样等等. 按不同的方法生成时间序列 In [7]: import pandas as pd # ...

  9. pandas基础用法——索引

    # -*- coding: utf-8 -*- # Time : 2016/11/28 15:14 # Author : XiaoDeng # version : python3.5 # Softwa ...

随机推荐

  1. Excel中的一列数据变成文本的一行数据

    Excel中的一列数据变成文本的一行数据 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

  2. [C2] 逻辑回归(Logistic Regression)

    逻辑回归(Logistic Regression) 假设函数(Hypothesis Function) \(h_\theta(x)=g(\theta^Tx)=g(z)=\frac{1}{1+e^{-z ...

  3. 如何对jmeter设置IP欺骗

    由于服务器出于安全考虑会对同一IP地址做过滤,所以如果想要达到正常的压测效果,我们需要在发请求时伪造出不同的IP地址.主要步骤分为以下3步:第一步:在负载机上绑定IP地址. 第二步:在要欺骗的http ...

  4. 封装cookie的设置和获取

    cookie的设置 function setCookie(key,value,options){ options=options||{}; var time=""; if(opti ...

  5. 大话设计模式Python实现-适配器模式

    适配器模式(Adapter Pattern):将一个类的接口转换成为客户希望的另外一个接口. 下面是一个适配器模式的demo: #!/usr/bin/env python # -*- coding:u ...

  6. mybatis错误:There is no getter for property named 'delegate' in 'class com.sun.proxy.$Proxy某某'

    错误描述: There is no getter for property named 'delegate' in 'class com.sun.proxy.$Proxy32' 错误原因: 1.你有多 ...

  7. svg path 解析

    <pre><svg width="100%" height="100%" version="1.1" xmlns=&quo ...

  8. jquery 属性名修改

    jquery   attr <script> // 获取class 名 $(".box").attr("class") // 修改或添加class名 ...

  9. 如何给gridControl动态的添加合计

    for (int i = 0; i < this.dsHz.Tables[0].Columns.Count; i++) { if (dsHz.Tables[0].Columns[i].DataT ...

  10. 一个简单的利用 WebClient 异步下载的示例(五)(完结篇)

    接着上一篇,我们继续来优化.我们的 SkyParallelWebClient 可否支持切换“同步下载模式”和“异步下载模式”呢,好处是大量的代码不用改,只需要调用 skyParallelWebClie ...