Basic Python : Map, Filter, Reduce, Zip

1-Map()

1.1 Syntax
#      fun : a function applying to the iterable object
# iterable : such as list, tuple, string and other iterable object map(fun, *iterable) # * token means that multi iterables is supported
1.2 Working

map() applying the given function to each item of the given iterable object.

map() returns an iterable object called "map object".

1.3 Examples
# eg 1
def addition(n):
return n + n numbers = (1, 2, 3, 4)
result = map(addition, numbers)
print(list(result))
>>>[2,4,6,8] # eg 2
numbers = (1, 2, 3, 4)
result = map(lambda x: x + x, numbers)
print(list(result))
>>>[2,4,6,8] # eg 3 - multi iterables
numbers1 = [1, 2, 3]
numbers2 = [4, 5, 6] result = map(lambda x, y: x + y, numbers1, numbers2)
print(list(result))
>>>[5,7,9]

2-Filter()

2.1 Syntax
#      fun : a function that tests if each element of the sequence true or not.
# sequence : who needs to be filtered, it can be sets, lists, tuples, or containers of any iterators. filter(fun, sequence)
2.2 Working

filter() applying the given function to each item of the given sequence object, and remain the eligible element.

filter() returns an iterator that is already filtered.

2.3 Examples
# eg 1
seq = [0, 1, 2, 3, 5, 8, 13] result = filter(lambda x: x % 2 == 0, seq)
print(list(result))
>>>[0, 2, 8]

3-Reduce()

3.1 Syntax
#      fun : a function applying to all elements of the sequence.
# sequence : who needs to be computered by itself, it can be sets, lists, tuples, or containers of any iterators. filter(fun, sequence)
3.2 Working
  1. At first step, first two elements of sequence are picked and the result is obtained.
  2. Next step is to apply the same function to the previously attained result and the number just succeeding the second element and the result is again stored.
  3. This process continues till no more elements are left in the container.
  4. The final returned result is returned and printed on console.
3.3 Examples
from functools import reduce

lis = [1, 3, 5, 6, 2] 

print (reduce(lambda a,b : a+b,lis))
print (reduce(lambda a,b : a if a > b else b,lis))
>>>17
>>>6

4-Zip()

4.1 Syntax
zip(*iterators)		# * token means that multi iterators is supported
4.2 Working

zip() returns a single iterator object, having mapped values from all the containers.

4.3 Examples
# 1. How to zip the iterators?
name = [ "Manjeet", "Nikhil", "Shambhavi", "Astha" ]
roll_no = [ 4, 1, 3, 2 ]
marks = [ 40, 50, 60, 70 ] mapped = list(zip(name, roll_no, marks))
print(mapped)
>>>[('Shambhavi', 3, 60), ('Astha', 2, 70),('Manjeet', 4, 40),('Nikhil', 1, 50)] # 2. How to unzip?
namz, roll_noz, marksz = zip(*mapped) # 3. How to traversal them?
players = [ "Sachin", "Sehwag", "Gambhir", "Dravid", "Raina" ]
scores = [100, 15, 17, 28, 43 ] for pl, sc in zip(players, scores):
print ("Player : %s Score : %d" %(pl, sc))
>>>
Player : Sachin Score : 100
Player : Sehwag Score : 15
Player : Gambhir Score : 17
Player : Dravid Score : 28
Player : Raina Score : 43

python常用函数进阶(2)之map,filter,reduce,zip的更多相关文章

  1. Python面试题之Python中的lambda map filter reduce zip

    当年龟叔想把上面列出来的这些都干掉.在 “All Things Pythonic: The fate of reduce() in Python 3000”这篇文章中,他给出了自己要移除lambda. ...

  2. Python中map,filter,reduce,zip的应用

    事例1: l=[('main', 'router_115.236.xx.xx', [{'abc': 1}, {'dfg': 1}]), ('main', 'router_183.61.xx.xx', ...

  3. python 内置函数 map filter reduce lambda

    map(函数名,可遍历迭代的对象) # 列组元素全加 10 # map(需要做什么的函数,遍历迭代对象)函数 map()遍历序列得到一个列表,列表的序号和个数和原来一样 l = [2,3,4,5,6, ...

  4. 【转】Python之函数进阶

    [转]Python之函数进阶 本节内容 上一篇中介绍了Python中函数的定义.函数的调用.函数的参数以及变量的作用域等内容,现在来说下函数的一些高级特性: 递归函数 嵌套函数与闭包 匿名函数 高阶函 ...

  5. Python常用函数记录

    Python常用函数/方法记录 一. Python的random模块: 导入模块: import random 1. random()方法: 如上如可知该函数返回一个[0,1)(左闭右开)的一个随机的 ...

  6. python 常用函数、内置函数清单

    文章内容摘自:http://www.cnblogs.com/vamei 1.type() 查询变量的类型 例: >>> a = 10>>> print a10> ...

  7. 数组的高阶方法map filter reduce的使用

    数组中常用的高阶方法: foreach    map    filter    reduce    some    every 在这些方法中都是对数组中每一个元素进行遍历操作,只有foreach是没有 ...

  8. 如何在python3.3用 map filter reduce

    在3.3里,如果直接使用map(), filter(), reduce(), 会出现 >>> def f(x): return x % 2 != 0 and x % 3 != 0  ...

  9. Swift map filter reduce 使用指南

    转载:https://useyourloaf.com/blog/swift-guide-to-map-filter-reduce/ Using map, filter or reduce to ope ...

随机推荐

  1. 请给出linux中查看系统已经登录用户的命令?

    w命令 第一行:当前系统运行了多久和系统负载 谁正在远程登录系统并且在干什么 [root@martin ~]# w 11:30:33 up 4 days, 18:10, 2 users, load a ...

  2. .NET架构师知识普及

    今天看到一篇漫画,[3年.NET开发应聘大厂惨遭淘汰,如何翻身打脸面试官?],好多问题,一下子还真的回答不了,这里对这些问题进行了整理,增加下脑容量,哈哈.俗话说不想当将军的士兵不是好士兵,不想当架构 ...

  3. ES6 新增声明变量的 var let const 的区别详解

    var 如果使用关键字 var 声明一个变量,那么这个变量就属于当前的函数作用域,如果声明是发生在任何函数外的顶层声明,那么这个变量就属于全局作用域. let 1.let 声明的变量具有块作用域的特征 ...

  4. 【数据结构】红黑树-Java实现

    WIKI:https://en.wikipedia.org/wiki/Red%E2%80%93black_tree 转:红黑树(五)之 Java的实现 总结的比较精炼的: http://www.cnb ...

  5. 【win10家庭版】删除文件提示没有权限最简单的方式(已验证)

    趁着618入了新本本,预装了家庭普通版Win10,但是实际使用中遇到了一些问题.问题不大,但是着实反人类,在此吐槽! 问题: 首先,进入系统会提示你建一个账号,建立完成登录系统.本账户拥有Admini ...

  6. 长春理工大学第十四届程序设计竞赛(重现赛)I

    I.Fate Grand Order 题目链接:https://ac.nowcoder.com/acm/contest/912/I 题目: Fate Grand Order是型月社发行的角色扮演类手机 ...

  7. flask 请求上下文源码(转)

    本篇阅读目录 一.flask请求上下文源码解读 二.http聊天室(单聊/群聊)- 基于gevent-websocket 回到顶部 转:https://www.cnblogs.com/li-li/p/ ...

  8. scrapy实战1分布式爬取有缘网(6.22接口已挂):

    直接上代码: items.py # -*- coding: utf-8 -*- # Define here the models for your scraped items # # See docu ...

  9. 关于过两级mux的时序约束的添加(一个非常经典的时序约束问题)

    非常开心自己的微信公众号: <数字集成电路设计及EDA教程> 关注者超过了1700 里面主要讲解数字IC前端.后端.DFT.低功耗设计以及验证等相关知识,并且讲解了其中用到的各种EDA工具 ...

  10. spark 源码分析之十四 -- broadcast 是如何实现的?

    本篇文章主要剖析broadcast 的实现机制. BroadcastManager初始化 BroadcastManager初始化方法源码如下: TorrentBroadcastFactory的继承关系 ...