Linux-3.14.12内存管理笔记【构建内存管理框架(3)】
此处接前文,分析free_area_init_nodes()函数最后部分,分析其末尾的循环:
for_each_online_node(nid) {
pg_data_t *pgdat = NODE_DATA(nid);
free_area_init_node(nid, NULL,
find_min_pfn_for_node(nid), NULL);
/* Any memory on that node */
if (pgdat->node_present_pages)
node_set_state(nid, N_MEMORY);
check_for_memory(pgdat, nid);
}
这里面的关键函数是free_area_init_node(),其入参find_min_pfn_for_node()用于获取node节点中最低的内存页框号。
而free_area_init_node()其实现:
【file:/mm/page_alloc.c】
void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
unsigned long node_start_pfn, unsigned long *zholes_size)
{
pg_data_t *pgdat = NODE_DATA(nid);
unsigned long start_pfn = 0;
unsigned long end_pfn = 0;
/* pg_data_t should be reset to zero when it's allocated */
WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
pgdat->node_id = nid;
pgdat->node_start_pfn = node_start_pfn;
init_zone_allows_reclaim(nid);
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
#endif
calculate_node_totalpages(pgdat, start_pfn, end_pfn,
zones_size, zholes_size);
alloc_node_mem_map(pgdat);
#ifdef CONFIG_FLAT_NODE_MEM_MAP
printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
nid, (unsigned long)pgdat,
(unsigned long)pgdat->node_mem_map);
#endif
free_area_init_core(pgdat, start_pfn, end_pfn,
zones_size, zholes_size);
}
该函数中,其中init_zone_allows_reclaim()用于计算评估内存管理区是否可回收以及合适的node节点数,如果非NUMA环境,则该函数为空。而基于CONFIG_HAVE_MEMBLOCK_NODE_MAP的配置下,接下来将是get_pfn_range_for_nid():
【file:/mm/page_alloc.c】
/**
* get_pfn_range_for_nid - Return the start and end page frames for a node
* @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
* @start_pfn: Passed by reference. On return, it will have the node start_pfn.
* @end_pfn: Passed by reference. On return, it will have the node end_pfn.
*
* It returns the start and end page frame of a node based on information
* provided by an arch calling add_active_range(). If called for a node
* with no available memory, a warning is printed and the start and end
* PFNs will be 0.
*/
void __meminit get_pfn_range_for_nid(unsigned int nid,
unsigned long *start_pfn, unsigned long *end_pfn)
{
unsigned long this_start_pfn, this_end_pfn;
int i;
*start_pfn = -1UL;
*end_pfn = 0;
for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
*start_pfn = min(*start_pfn, this_start_pfn);
*end_pfn = max(*end_pfn, this_end_pfn);
}
if (*start_pfn == -1UL)
*start_pfn = 0;
}
此函数主要是将内存node节点的起始和末尾页框号返回给接下来的calculate_node_totalpages()来使用。
calculate_node_totalpages()实现:
【file:/mm/page_alloc.c】
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
unsigned long node_start_pfn,
unsigned long node_end_pfn,
unsigned long *zones_size,
unsigned long *zholes_size)
{
unsigned long realtotalpages, totalpages = 0;
enum zone_type i;
for (i = 0; i < MAX_NR_ZONES; i++)
totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
node_start_pfn,
node_end_pfn,
zones_size);
pgdat->node_spanned_pages = totalpages;
realtotalpages = totalpages;
for (i = 0; i < MAX_NR_ZONES; i++)
realtotalpages -=
zone_absent_pages_in_node(pgdat->node_id, i,
node_start_pfn, node_end_pfn,
zholes_size);
pgdat->node_present_pages = realtotalpages;
printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
realtotalpages);
}
其中zone_spanned_pages_in_node():
【file:/mm/page_alloc.c】
/*
* Return the number of pages a zone spans in a node, including holes
* present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
*/
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
unsigned long zone_type,
unsigned long node_start_pfn,
unsigned long node_end_pfn,
unsigned long *ignored)
{
unsigned long zone_start_pfn, zone_end_pfn;
/* Get the start and end of the zone */
zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
adjust_zone_range_for_zone_movable(nid, zone_type,
node_start_pfn, node_end_pfn,
&zone_start_pfn, &zone_end_pfn);
/* Check that this node has pages within the zone's required range */
if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
return 0;
/* Move the zone boundaries inside the node if necessary */
zone_end_pfn = min(zone_end_pfn, node_end_pfn);
zone_start_pfn = max(zone_start_pfn, node_start_pfn);
/* Return the spanned pages */
return zone_end_pfn - zone_start_pfn;
}
其主要是统计node管理节点的内存跨度,该跨度不包括movable管理区的,里面调用的adjust_zone_range_for_zone_movable()则是用于剔除movable管理区的部分。
另外的zone_absent_pages_in_node():
【file:/mm/page_alloc.c】
/* Return the number of page frames in holes in a zone on a node */
static unsigned long __meminit zone_absent_pages_in_node(int nid,
unsigned long zone_type,
unsigned long node_start_pfn,
unsigned long node_end_pfn,
unsigned long *ignored)
{
unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
unsigned long zone_start_pfn, zone_end_pfn;
zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
adjust_zone_range_for_zone_movable(nid, zone_type,
node_start_pfn, node_end_pfn,
&zone_start_pfn, &zone_end_pfn);
return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
}
该函数主要用于计算内存空洞页面数的。完了将会得到物理页面总数并在calculate_node_totalpages()中将页面总数打印出来:
再往下的mminit_verify_pageflags_layout()函数主要用于内存初始化调测使用的,由于未开启CONFIG_DEBUG_MEMORY_INIT配置项,此函数为空。而setup_nr_node_ids()是用于设置内存节点总数的,此处如果最大节点数MAX_NUMNODES不超过1,则是空函数。
free_area_init_nodes()函数末了还有一个遍历各个节点做初始化的操作,暂且留待后面再分析。
Linux-3.14.12内存管理笔记【构建内存管理框架(3)】的更多相关文章
- Linux-3.14.12内存管理笔记【内存泄漏检测kmemleak示例】【转】
本文转载自:http://blog.chinaunix.net/uid-26859697-id-5758037.html 分析完kmemleak实现后,照常实验一下,以确定功能正常. 如kmemche ...
- Linux中的Buffer Cache和Page Cache echo 3 > /proc/sys/vm/drop_caches Slab内存管理机制 SLUB内存管理机制
Linux中的Buffer Cache和Page Cache echo 3 > /proc/sys/vm/drop_caches Slab内存管理机制 SLUB内存管理机制 http://w ...
- 垃圾回收GC:.Net自己主动内存管理 上(一)内存分配
垃圾回收GC:.Net自己主动内存管理 上(一)内存分配 垃圾回收GC:.Net自己主动内存管理 上(一)内存分配 垃圾回收GC:.Net自己主动内存管理 上(二)内存算法 垃圾回收GC:.Net自己 ...
- Win3内存管理之私有内存跟共享内存的申请与释放
Win3内存管理之私有内存跟共享内存的申请与释放 一丶内存简介私有内存申请 通过上一篇文章.我们理解了虚拟内存与物理内存的区别. 那么我们有API事专门申请虚拟内存与物理内存的. 有私有内存跟共享内存 ...
- JVM自动内存管理机制——Java内存区域(下)
一.虚拟机参数配置 在上一篇<Java自动内存管理机制——Java内存区域(上)>中介绍了有关的基础知识,这一篇主要是通过一些示例来了解有关虚拟机参数的配置. 1.Java堆参数设置 a) ...
- 垃圾回收GC:.Net自己主动内存管理 上(二)内存算法
垃圾回收GC:.Net自己主动内存管理 上(二)内存算法 垃圾回收GC:.Net自己主动内存管理 上(一)内存分配 垃圾回收GC:.Net自己主动内存管理 上(二)内存算法 垃圾回收GC:.Net自己 ...
- Linux-3.14.12内存管理笔记【构建内存管理框架(1)】
传统的计算机结构中,整个物理内存都是一条线上的,CPU访问整个内存空间所需要的时间都是相同的.这种内存结构被称之为UMA(Uniform Memory Architecture,一致存储结构).但是随 ...
- Linux-3.14.12内存管理笔记【构建内存管理框架(5)】
前面已经分析了内存管理框架的构建实现过程,有部分内容未完全呈现出来,这里主要做个补充. 如下图,这是前面已经看到过的linux物理内存管理框架的层次关系. 现着重分析一下各个管理结构体的成员功能作用. ...
- Linux-3.14.12内存管理笔记【构建内存管理框架(2)】
前面构建内存管理框架,已经将内存管理node节点设置完毕,接下来将是管理区和页面管理的构建.此处代码实现主要在于setup_arch()下的一处钩子:x86_init.paging.pagetable ...
随机推荐
- 创建mysql索引的方式
创建索引方式: 1.create index 索引名 on 表名 (字段) 2.alter table 表 add index 索引名 (字段) -- 普通索引 alter table 表名 ...
- JavaBean动态添加删除属性
1.cglib BeanGenerator beanGenerator = new BeanGenerator(); beanGenerator.addProperty("id", ...
- IT兄弟连 HTML5教程 CSS3属性特效 CSS3分栏布局
CSS3中新出现的多列布局(multi-column)是传统HTML网页中块状布局模式的有力扩充.这种新语法能够让WEB开发人员轻松的让文本呈现多列显示.我们知道,当一行文字太长时,读者读起来就比较费 ...
- ruby中的多线程和函数的关键字传参
1.实现ruby中的多线程 # def test1 # n = 1 # if n > 10 # puts "test1结束" # else # while true # sl ...
- IO - 同步 异步 阻塞 非阻塞的区别,学习Swoole有帮助
同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别?本文较长需耐心阅读,基础 ...
- Consul初探-在深交之前先认识
Consul 是什么? Consul 官方站点:https://www.consul.io/ 首先,官方介绍是:Consul 是一种服务网格的解决方案,在 Consul 中,提供了服务发现.配置.分段 ...
- golang的缓冲channel简单使用
目录 golang的缓冲channel简单使用 阻塞型 非阻塞 golang的缓冲channel简单使用 我们常用的是无缓冲channel : make(chan type) 其实make() 创建c ...
- Windows CLI命令
目录 Windows CLI命令 1.背景 2.netstat 罗列端口号占用情况 3.telnet 远端IP的某个端口号 Windows CLI命令 1.背景 在Windows操作系统下开发,需要用 ...
- vue.js 本地解决跨域
1.config/index.js下添加proxyTable dev: { // Paths assetsSubDirectory: 'static', assetsPublicPath: '/', ...
- nvidia-smi 常用命令使用手册
# 定时刷新 nvidia-smi 显示的结果 nvidia-smi -l 1 # 以 1 秒的频率进行刷新 nvidia-smi -lms 1 #以 1 毫秒的频率进行刷新 #保持更新,更多内容请 ...