Paper | A novel deep learning-based method of improving coding efficiency from the decoder-end for HEVC
发表在2017年DCC。
这篇文章立意很简单,方法也很简单,但是做得早、效果好、引用量也不错(40+)。
指标:在HEVC的intra、LDP、LDB和RA模式下,BDBR平均可以下降5%、6.4%、5.3%和5.5%。
由于是解码端(decoder-end)的网络,因此可以进一步解决inloop-filter没能解决的块效应和振铃效应等压缩伪影。
以下摘一些精彩的叙述,同时重点看清楚实施细节。
精彩叙述
提升压缩质量是视频编码的永恒主题。然而,无论我们如何修改编码器,视频冗余已经很难下降。
在解码端增强视频质量,等价于提升了压缩效率。
这种方法受益于端到端训练,并且可以拓展至视频压缩标准。
由于实际的有损压缩标准都不是理论最优的,因此就存在信息冗余可以被继续挖掘和利用。
JPEG、H264、HEVC等方法之所以没能突破压缩率极限,就是因为它们没有利用外部信息或先验。
我们无需修改编码器。
作者将那些传统的优化方法称为compressive-sensing-based methods。它们通常不考虑外部先验,但仍然能取得一定效果,说明冗余仍然是存在的。
细节
DCAD:Deep CNN-based Auto Decoder。

训练目标:MSE损失。
网络结构:10层\(64 \times 3 \times 3\)滤波器堆叠,ReLU激活函数(除了最后一层),全局残差网络,各层补零。
作者试过20层,效果并没有更好。
在选择训练块时,作者是根据TU分割信息选择的。作者尽量使得每一种TU分割的数量相同,即均匀出现在训练集中。
对于高QP模型,作者将低QP模型迁移过来,以更好地学习。
图像为YCbCr三通道,只在亮度通道上增强。
HM 16.0压缩,考虑了QP = 22,27,32,37。
AdaDelta优化方法比学习率衰减方法更好。关于四个QP的初始学习率分别设为1,0.1,0.1和0.01。
最后一层的学习率是全局的1/10。
Paper | A novel deep learning-based method of improving coding efficiency from the decoder-end for HEVC的更多相关文章
- 【RS】Deep Learning based Recommender System: A Survey and New Perspectives - 基于深度学习的推荐系统:调查与新视角
[论文标题]Deep Learning based Recommender System: A Survey and New Perspectives ( ACM Computing Surveys ...
- Predicting effects of noncoding variants with deep learning–based sequence model | 基于深度学习的序列模型预测非编码区变异的影响
Predicting effects of noncoding variants with deep learning–based sequence model PDF Interpreting no ...
- 论文翻译:2021_Towards model compression for deep learning based speech enhancement
论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model c ...
- 论文笔记: Deep Learning based Recommender System: A Survey and New Perspectives
(聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平 ...
- Paper Reading——LEMNA:Explaining Deep Learning based Security Applications
Motivation: The lack of transparency of the deep learning models creates key barriers to establishi ...
- Paper List ABOUT Deep Learning
Deep Learning 方向的部分 Paper ,自用.一 RNN 1 Recurrent neural network based language model RNN用在语言模型上的开山之作 ...
- 个性探测综述阅读笔记——Recent trends in deep learning based personality detection
目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 ...
- paper 147:Deep Learning -- Face Data Augmentation(一)
1. 在深度学习中,当数据量不够大时候,常常采用下面4中方法: (1)人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data ...
- Deep Learning 12_深度学习UFLDL教程:Sparse Coding_exercise(斯坦福大学深度学习教程)
前言 理论知识:UFLDL教程.Deep learning:二十六(Sparse coding简单理解).Deep learning:二十七(Sparse coding中关于矩阵的范数求导).Deep ...
随机推荐
- OpenDaylight开发hello-world项目之代码框架搭建
OpenDaylight开发hello-world项目之开发环境搭建 OpenDaylight开发hello-world项目之开发工具安装 OpenDaylight开发hello-world项目之代码 ...
- springboot整合shiro进行权限管理
背景:springboot2.1,shiro1.4:由于目前的小项目没做登录,但是客户又需要加上权限,因此楼主就想到了shiro(这是单独的项目,需要集成后台管理系统) shiro简介 Apache ...
- python服务不能在docker容器里运行的问题
在开发过程中,我们将mysql.redis.celery等服务在docker容器里跑,项目在本地运行,便于debug调试 docker-compose -f docker-compose-dev.ym ...
- autojump--懒人利器
只有打开过的目录 autojump 才会记录,所以使用时间越长,autojump 才会越智能. 可以使用 autojump 命令,或者使用短命令 j. 跳转到指定目录 j directoryName ...
- 《细说PHP》第四版 样章 第23章 自定义PHP接口规范 5
23.3 接口的安全控制规范 23.2节的示例实现了一个简单接口,但是这个接口此时是在“裸奔”的.因为这个接口所有人都可以请求,不仅我们的客户端可以正常访问数据,如果有人使用如fiddler.wir ...
- Linux常用命令之文件编辑命令vim
vi命令 vi命令是UNIX操作系统和类UNIX操作系统中最通用的全屏幕纯文本编辑器.Linux中的vi编辑器叫vim,它是vi的增强版(vi Improved),与vi编辑器完全兼容,而且实现了很多 ...
- FastJson中的ObjectMapper对象的使用详解
写在前面:开发中经常用到json和对象的相互转换,下面将列出FastJson中ObjectMapper对象的API的使用 一.maven工程中pom导入<dependency> <g ...
- jquery中的ajax请求到php(学生笔记)
首先ajax的基本语法基础.(必须得引入一个jquery文件,下面的例子展示用了网上的jquery文件,要联网.) 2.请求成功(复制代码运行观察效果) <!DOCTYPE html> & ...
- linux安装IB驱动方法
一.准备 1.Linux操作系统7.6(根据实际情况变更,此处用redhat7.6系统举例) 2.驱动:MLNX_OFED_LINUX-4.6-1.0.1.1-rhel7.6-x86_64.tgz(根 ...
- 4-1-JS数据类型及相关操作
js的数据类型 判断数据类型 用typeof typeof "John" // alert(typeof "John") 返 ...