微服务中的Kafka与Micronaut
今天,我们将通过Apache Kafka
主题构建一些彼此异步通信的微服务。我们使用Micronaut
框架,它为与Kafka
集成提供专门的库。让我们简要介绍一下示例系统的体系结构。我们有四个微型服务:订单服务
,行程服务
,司机服务
和乘客服务
。这些应用程序的实现非常简单。它们都有内存存储,并连接到同一个Kafka
实例。
我们系统的主要目标是为客户安排行程。订单服务应用程序还充当网关。它接收来自客户的请求,保存历史记录并将事件发送到orders
主题。所有其他微服务都在监听orders
这个主题,并处理order-service
发送的订单。每个微服务都有自己的专用主题,其中发送包含更改信息的事件。此类事件由其他一些微服务接收。架构如下图所示。
在阅读本文之前,有必要熟悉一下Micronaut
框架。您可以阅读之前的一篇文章,该文章描述了通过REST API构建微服务通信的过程
:使用microaut框架构建微服务的快速指南。
1 运行Kafka
要在本地机器上运行Apache Kafka
,我们可以使用它的Docker映像。最新的镜像是由https://hub.docker.com/u/wurstmeister共享的。在启动Kafka
容器之前,我们必须启动kafka
所用使用的ZooKeeper
服务器。如果在Windows
上运行Docker
,其虚拟机的默认地址是192.168.99.100
。它还必须设置为Kafka
容器的环境。
Zookeeper
和Kafka
容器都将在同一个网络中启动。在docker中运行Zookeeper以zookeeper
的名称提供服务,并在暴露2181
端口。Kafka
容器需要在环境变量使用KAFKA_ZOOKEEPER_CONNECT
的地址。
$ docker network create kafka
$ docker run -d --name zookeeper --network kafka -p 2181:2181 wurstmeister/zookeeper
$ docker run -d --name kafka -p 9092:9092 --network kafka --env KAFKA_ADVERTISED_HOST_NAME=192.168.99.100 --env KAFKA_ZOOKEEPER_CONNECT=zookeeper:2181 wurstmeister/kafka
2 添加micronaut-kafka依赖
使用Kafka
构建的microaut
应用程序可以在HTTP服务器存在的情况下启动,也可以在不存在HTTP服务器的情况下启动。要启用Micronaut Kafka
,需要添加micronaut-kafka
库到依赖项。如果您想暴露HTTP API
,您还应该添加micronaut-http-server-netty
:
<dependency>
<groupId>io.micronaut.configuration</groupId>
<artifactId>micronaut-kafka</artifactId>
</dependency>
<dependency>
<groupId>io.micronaut</groupId>
<artifactId>micronaut-http-server-netty</artifactId>
</dependency>
3 构建订单微服务
订单微服务
是唯一一个启动嵌入式HTTP服务器并暴露REST API
的应用程序。这就是为什么我们可以为Kafka
提供内置Micronaut
健康检查。要做到这一点,我们首先应该添加micronaut-management
依赖:
<dependency>
<groupId>io.micronaut</groupId>
<artifactId>micronaut-management</artifactId>
</dependency>
为了方便起见,我们将通过在application.yml
中定义以下配置来启用所有管理端点并禁用它们的HTTP身份验证。
endpoints:
all:
enabled: true
sensitive: false
现在,可以在地址栏http://localhost:8080/health下使用health check
。我们的示例应用程序还将暴露添加新订单
和列出所有以前创建的订单
的简单REST API
。下面是暴露这些端点的Micronaut
控制器实现:
@Controller("orders")
public class OrderController {
@Inject
OrderInMemoryRepository repository;
@Inject
OrderClient client;
@Post
public Order add(@Body Order order) {
order = repository.add(order);
client.send(order);
return order;
}
@Get
public Set<Order> findAll() {
return repository.findAll();
}
}
每个微服务都使用内存存储库实现。以下是订单微服务(Order-Service)
中的存储库实现:
@Singleton
public class OrderInMemoryRepository {
private Set<Order> orders = new HashSet<>();
public Order add(Order order) {
order.setId((long) (orders.size() + 1));
orders.add(order);
return order;
}
public void update(Order order) {
orders.remove(order);
orders.add(order);
}
public Optional<Order> findByTripIdAndType(Long tripId, OrderType type) {
return orders.stream().filter(order -> order.getTripId().equals(tripId) && order.getType() == type).findAny();
}
public Optional<Order> findNewestByUserIdAndType(Long userId, OrderType type) {
return orders.stream().filter(order -> order.getUserId().equals(userId) && order.getType() == type)
.max(Comparator.comparing(Order::getId));
}
public Set<Order> findAll() {
return orders;
}
}
内存存储库存储Order
对象实例。Order
对象还被发送到名为orders
的Kafka主题。下面是Order
类的实现:
public class Order {
private Long id;
private LocalDateTime createdAt;
private OrderType type;
private Long userId;
private Long tripId;
private float currentLocationX;
private float currentLocationY;
private OrderStatus status;
// ... GETTERS AND SETTERS
}
4 使用Kafka异步通信
现在,让我们想一个可以通过示例系统实现的用例——添加新的行程
。
我们创建了OrderType.NEW_TRIP
类型的新订单。在此之后,(1)订单服务
创建一个订单并将其发送到orders
主题。订单由三个微服务接收:司机服务
、乘客服务
和行程服务
。
(2)所有这些应用程序都处理这个新订单。乘客服务
应用程序检查乘客帐户上是否有足够的资金。如果没有,它就取消了行程,否则它什么也做不了。司机服务
正在寻找最近可用的司机,(3)行程服务
创建和存储新的行程。司机服务
和行程服务
都将事件发送到它们的主题(drivers
, trips
),其中包含相关更改的信息。
每一个事件可以被其他microservices
访问,例如,(4)行程服务
侦听来自司机服务
的事件,以便为行程分配一个新的司机
下图说明了在添加新的行程时,我们的微服务之间的通信过程。
现在,让我们继续讨论实现细节。
4.1 发送订单
首先,我们需要创建Kafka 客户端,负责向主题发送消息。我们创建的一个接口,命名为OrderClient
,为它添加@KafkaClient
并声明用于发送消息的一个或多个方法。每个方法都应该通过@Topic
注解设置目标主题名称。对于方法参数,我们可以使用三个注解@KafkaKey
、@Body
或@Header
。@KafkaKey
用于分区,这是我们的示例应用程序所需要的。在下面可用的客户端实现中,我们只使用@Body
注解。
@KafkaClient
public interface OrderClient {
@Topic("orders")
void send(@Body Order order);
}
4.2 接收订单
一旦客户端发送了一个订单,它就会被监听orders
主题的所有其他微服务接收。下面是司机服务
中的监听器实现。监听器类OrderListener
应该添加@KafkaListener
注解。我们可以声明groupId
作为一个注解参数,以防止单个应用程序的多个实例接收相同的消息。然后,我们声明用于处理传入消息的方法。与客户端方法相同,应该通过@Topic
注解设置目标主题名称,因为我们正在监听Order
对象,所以应该使用@Body
注解——与对应的客户端方法相同。
@KafkaListener(groupId = "driver")
public class OrderListener {
private static final Logger LOGGER = LoggerFactory.getLogger(OrderListener.class);
private DriverService service;
public OrderListener(DriverService service) {
this.service = service;
}
@Topic("orders")
public void receive(@Body Order order) {
LOGGER.info("Received: {}", order);
switch (order.getType()) {
case NEW_TRIP -> service.processNewTripOrder(order);
}
}
}
4.3 发送到其他主题
现在,让我们看一下司机服务
中的processNewTripOrder
方法。DriverService
注入两个不同的Kafka Client
bean: OrderClient
和DriverClient
。当处理新订单时,它将试图寻找与发送订单的乘客最近的司机。找到他之后,将该司机的状态更改为UNAVAILABLE
,并将带有Driver
对象的事件发送到drivers
主题。
@Singleton
public class DriverService {
private static final Logger LOGGER = LoggerFactory.getLogger(DriverService.class);
private DriverClient client;
private OrderClient orderClient;
private DriverInMemoryRepository repository;
public DriverService(DriverClient client, OrderClient orderClient, DriverInMemoryRepository repository) {
this.client = client;
this.orderClient = orderClient;
this.repository = repository;
}
public void processNewTripOrder(Order order) {
LOGGER.info("Processing: {}", order);
Optional<Driver> driver = repository.findNearestDriver(order.getCurrentLocationX(), order.getCurrentLocationY());
driver.ifPresent(driverLocal -> {
driverLocal.setStatus(DriverStatus.UNAVAILABLE);
repository.updateDriver(driverLocal);
client.send(driverLocal, String.valueOf(order.getId()));
LOGGER.info("Message sent: {}", driverLocal);
});
}
// ...
}
这是Kafka Client
在司机服务
中的实现,用于向driver
主题发送消息。因为我们需要将Driver
与Order
关联起来,所以我们使用@Header
注解 的orderId
参数。没有必要把它包括到Driver
类中,将其分配给监听器端的正确行程。
@KafkaClient
public interface DriverClient {
@Topic("drivers")
void send(@Body Driver driver, @Header("Order-Id") String orderId);
}
4.4 服务间通信
由DriverListener
收到@KafkaListener
在行程服务
中声明。它监听传入到trip
主题。接收方法的参数和客户端发送方法的类似,如下所示:
@KafkaListener(groupId = "trip")
public class DriverListener {
private static final Logger LOGGER = LoggerFactory.getLogger(OrderListener.class);
private TripService service;
public DriverListener(TripService service) {
this.service = service;
}
@Topic("drivers")
public void receive(@Body Driver driver, @Header("Order-Id") String orderId) {
LOGGER.info("Received: driver->{}, header->{}", driver, orderId);
service.processNewDriver(driver);
}
}
最后一步,将orderId
查询到的行程Trip
与driverId
关联,这样整个流程就结束。
@Singleton
public class TripService {
private static final Logger LOGGER = LoggerFactory.getLogger(TripService.class);
private TripInMemoryRepository repository;
private TripClient client;
public TripService(TripInMemoryRepository repository, TripClient client) {
this.repository = repository;
this.client = client;
}
public void processNewDriver(Driver driver, String orderId) {
LOGGER.info("Processing: {}", driver);
Optional<Trip> trip = repository.findByOrderId(Long.valueOf(orderId));
trip.ifPresent(tripLocal -> {
tripLocal.setDriverId(driver.getId());
repository.update(tripLocal);
});
}
// ... OTHER METHODS
}
5 跟踪
我们可以使用Micronaut Kafka轻松地启用分布式跟踪。首先,我们需要启用和配置Micronaut跟踪。要做到这一点,首先应该添加一些依赖项:
<dependency>
<groupId>io.micronaut</groupId>
<artifactId>micronaut-tracing</artifactId>
</dependency>
<dependency>
<groupId>io.zipkin.brave</groupId>
<artifactId>brave-instrumentation-http</artifactId>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>io.zipkin.reporter2</groupId>
<artifactId>zipkin-reporter</artifactId>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>io.opentracing.brave</groupId>
<artifactId>brave-opentracing</artifactId>
</dependency>
<dependency>
<groupId>io.opentracing.contrib</groupId>
<artifactId>opentracing-kafka-client</artifactId>
<version>0.0.16</version>
<scope>runtime</scope>
</dependency>
我们还需要在application.yml
配置文件中,配置Zipkin 的追踪的地址等
tracing:
zipkin:
enabled: true
http:
url: http://192.168.99.100:9411
sampler:
probability: 1
在启动应用程序之前,我们必须运行Zipkin
容器:
$ docker run -d --name zipkin -p 9411:9411 openzipkin/zipkin
6 总结
在本文中,您将了解通过Apache Kafka
使用异步通信构建微服务架构的过程。我已经向大家展示了Microaut Kafka
库最重要的特性,它允许您轻松地声明Kafka
主题的生产者和消费者,为您的微服务启用健康检查
和分布式跟踪
。我已经为我们的系统描述了一个简单的场景的实现,包括根据客户的请求添加一个新的行程。本示例系统的整体实现,请查看GitHub上的源代码
微服务中的Kafka与Micronaut的更多相关文章
- Micronaut 微服务中使用 Kafka
今天,我们将通过Apache Kafkatopic构建一些彼此异步通信的微服务.我们使用Micronaut框架,它为与Kafka集成提供专门的库.让我们简要介绍一下示例系统的架构.我们有四个微型服务: ...
- 谈谈微服务中的 API 网关(API Gateway)
前言 又是很久没写博客了,最近一段时间换了新工作,比较忙,所以没有抽出来太多的时间写给关注我的粉丝写一些干货了,就有人问我怎么最近没有更新博客了,在这里给大家抱歉. 那么,在本篇文章中,我们就一起来探 ...
- .NET CORE微服务中CONSUL的相关使用
.NET CORE微服务中CONSUL的相关使用 1.consul在微服务中的作用 consul主要做三件事:1.提供服务到ip的注册 2.提供ip到服务地址的列表查询 3.对提供服务方做健康检查(定 ...
- Spring Cloud微服务中网关服务是如何实现的?(Zuul篇)
导读 我们知道在基于Spring Cloud的微服务体系中,各个微服务除了在内部提供服务外,有些服务接口还需要直接提供给客户端,如Andirod.IOS.H5等等. 而一个很尴尬的境地是,如果直接将提 ...
- 微服务中的 API 网关(API Gateway)
API 网关(API Gateway)提供高性能.高可用的 API 托管服务,帮助用户对外开放其部署在 ECS.容器服务等云产品上的应用,提供完整的 API 发布.管理.维护生命周期管理.用户只需进行 ...
- 在spring boot微服务中使用JWS发布webService
发布时间:2018-11-22 技术:Java+spring+maven 概述 在springboot微服务中使用JWS发布webService,在服务启动时自动发布webservice接口. ...
- 微服务中的健康监测以及其在ASP.NET Core服务中实现运行状况检查
1 .什么是健康检查? 健康检查几乎就是名称暗示的.它是一种检查您的应用程序是否健康的方法.随着越来越多的应用程序转向微服务式架构,健康检查变得尤其重要(Health Check).虽然微服务架构有很 ...
- 微服务中的CAP定律
说到微服务,先给大家提一下CAP分布式应用知识吧,无论你微服务使用的是阿里云开源的Dubbo还是基于Springboot的一整套实现微服务的Springcloud都必须遵循CAP定理不然你所实现的分布 ...
- Service Mesh——微服务中的流量管理中间件
Service Mesh--微服务中的流量管理中间件 摘自-https://zhuanlan.zhihu.com/p/28794062 Service mesh 与 Cloud Native Kube ...
随机推荐
- MyBatis 示例-类型处理器
MyBatis 提供了很多默认类型处理器,参考官网地址:链接,除了官网提供的类型处理器,我们也可以自定义类型处理器. 具体做法为:实现 org.apache.ibatis.type.TypeHandl ...
- 元祖tuple
1.区别: 列表有序的,可以被修改 元祖一级元素不可以被修改,删除,添加,内部的列表中的元素可以被修改 tu = (5,'gf',58,[65,'hf'],'fdg') tu[3][1]=3562.定 ...
- Spring MVC(2)Spring MVC 组件开发
一.控制器接收各类请求参数 代码测试环境: 接收各类参数的控制器--ParamsController package com.ssm.chapter15.controller; @Controller ...
- Java基础(八)对象包装器与自动装箱
1.对象包装器 有时候,需要将int这样的基本类型转换为对象.所有的基本类型都有一个与之对应的类.通常,这些类被称为包装器(wrapper). 这些对象包装类分别是:Integer.Long.Floa ...
- Redis(十二)flush误操作、Redis安全、处理bigkey和寻找热点key
一.flushall/flushdb误操作的处理 假设进行flush操作的Redis是一对主从结构的主节点,其中键值对的个数是100万,每秒写入量是1000. 1.缓存与存储 被误操作flush后,根 ...
- 修改vuex状态机中的数据
vuex状态机中的数据是必须提交mutation来修改,如果现实开发中,我们需要修改,而又不想提交mutaition,应该怎么做呢? 先来回顾一下场景,有一个列表是存在vuex中的 这个列表展 ...
- Mybatis JdbcType与Oracle、MySql 数据类型对应关系
MyBatis 包含的jdbcType类型 ------------------------------------------------------------------------------ ...
- 数据文件包解析工具类 RandomAccessFile
public class ReadTextFile { public static void main(String[] args) { pic2txt(); parseFrmFile(); //ur ...
- SpringCloud 中集成Sentinel+Feign实现服务熔断降级
Sentine 1.背景 Sentinel 是阿里中间件团队开源的,面向分布式服务架构的轻量级高可用流量控制组件,主要以流量为切入点,从流量控制.熔断降级.系统负载保护等多个维度来帮助用户保护服务的稳 ...
- (七)golang-变量之基本数据类型(看这篇就够了)
1.整数类型 类型 有无符号 占用存储空间 表示范围 备注 int8 有 1字节 -2**7~2**7-1 int16 有 2字节 -2**15~2**15-1 int32 有 4字节 -2* ...