矩阵快速幂 hud 1575 Tr A 模板 *
Tr A
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5366 Accepted Submission(s): 4024
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
矩阵快速幂的模板题
#include<iostream>
#include<cstdio>
#include<cstring>
#define mod 9973
#define maxn 12
using namespace std;
struct mat{
int s[maxn][maxn],n;
mat (int n1){//构造器
n = n1;
memset(s,,sizeof(s));//一定要初始化
}
void init(){
for(int i=;i<=n;i++){//单位矩阵的初始化,切记!
s[i][i] = ;//如果没有这个的话就不能直接相乘
}
}
mat operator * (const mat m){
mat ans(this->n);//理解this的用法
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
for(int k=;k<=n;k++){
ans.s[i][j] = (ans.s[i][j] + this->s[i][k] * m.s[k][j])%mod;
}
}
}
return ans;
}
};
mat quick_mod(mat &m,int p){//和整数快速幂一样的方法,只不过这里面的乘是矩阵的相乘
mat ans(m.n);
ans.init();// ans一定要为单位矩阵的!
while(p){
if(p&){
ans = ans * m;
}
m = m*m;
p >>= ;
}
return ans;
}
int main()
{
int t,n,k;
cin >> t;
while(t--){
cin >> n >> k;
mat m(n);
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
cin >> m.s[i][j];
}
}
mat ans(n);
ans = quick_mod(m,k);
int sum = ;
for(int i=;i<=n;i++){
sum = (sum+ans.s[i][i])%mod;
}
cout << sum << endl;
}
return ;
}
矩阵快速幂 hud 1575 Tr A 模板 *的更多相关文章
- (矩阵快速幂)HDU1575 Tr A
Tr A Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- 简单矩阵快速幂(HDU Tr A 1575)
题目中所给的方阵就是一个矩阵,而就是只要将题目所给矩阵不断进行相乘即可,本题中我采用的是直接重载运算符*,使矩阵每一个都进行运算,可以简化为只对对角线上的元素进行运算.最后所得结果就只需将最终的矩阵上 ...
- poj 3070 Fibonacci (矩阵快速幂乘/模板)
题意:给你一个n,输出Fibonacci (n)%10000的结果 思路:裸矩阵快速幂乘,直接套模板 代码: #include <cstdio> #include <cstring& ...
- HDU 1575 Tr A 【矩阵经典2 矩阵快速幂入门】
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=1575 Tr A Time Limit: 1000/1000 MS (Java/Others) Me ...
- HDU.1575 Tr A ( 矩阵快速幂)
HDU.1575 Tr A ( 矩阵快速幂) 点我挑战题目 题意分析 直接求矩阵A^K的结果,然后计算正对角线,即左上到右下对角线的和,结果模9973后输出即可. 由于此题矩阵直接给出的,题目比较裸. ...
- hdu 1575 求一个矩阵的k次幂 再求迹 (矩阵快速幂模板题)
Problem DescriptionA为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input数据的第一行是一个T,表示有T组数据.每组数据的第一行有 ...
- hdu 1575 Tr A(矩阵快速幂)
今天做的第二道矩阵快速幂题,因为是初次接触,各种奇葩错误整整调试了一下午.废话不说,入正题.该题应该属于矩阵快速幂的裸题了吧,知道快速幂原理(二进制迭代法,非递归版)后,剩下的只是处理矩阵乘法的功夫了 ...
- hdu 1575 Tr A(矩阵快速幂,简单)
题目 和 LightOj 1096 - nth Term 类似的线构造一个符合题意的矩阵乘法模版,然后套快速幂的模版,具体的构造矩阵我就不作图了,看着代码也能理解吧 #include<stdi ...
- HDU 1575 Tr A( 简单矩阵快速幂 )
链接:传送门 思路:简单矩阵快速幂,算完 A^k 后再求一遍主对角线上的和取个模 /********************************************************** ...
随机推荐
- 在表格中添加text便加框
private void createTableText(Table table) { TableEditor editor = new TableEditor(table); for (int i ...
- SmartSql使用教程(4)——多库配置与使用
一.引言 已经几个月没更新了.本来上一章的预告是准备写TypeHandler的相关特性的.但是在准备的时候.SmartSql的作者重构了一下TypeHandler,使得我一下子没搞懂TypeHandl ...
- luogu1330_封锁阳光大学 图的遍历
传送门 解释:(转自洛谷题解) 首先,肯定要明确一点,那就是这个图是不一定联通的.于是,我们就可以将整张图切分成许多分开的连同子图来处理.然而最重要的事情是:如何处理一个连通图? 乍看下去,似乎无从下 ...
- Zookeeeper应用实践(四)
zk的应用还是非常广泛的. 1. 分布式锁 单机环境下的锁还是很容易去实现的,但是在分布式环境下一切都变得不是那么简单.zk实现分布式锁的原理还简单,因为在分布式环境中的zk节点的变化会被每一台机器w ...
- MyISAM和InnoDB在索引上的差别及其它区别
首先我们知道MyISM和InnoDB索引都是由B+树实现的,但在索引管理数据方式上却有所不同. InnoDB是聚集索引,数据文件是和(主键)索引绑在一起的,即索引 + 数据 = 整个表数据文件,通过主 ...
- [转载]线程池ThreadPoolExecutor使用简介
一.简介 线程池类为 java.util.concurrent.ThreadPoolExecutor,常用构造方法为: ThreadPoolExecutor(int corePoolSize, int ...
- 201412-2 Z字形扫描(c语言)
问题描述 在图像编码的算法中,需要将一个给定的方形矩阵进行Z字形扫描(Zigzag Scan).给定一个n×n的矩阵,Z字形扫描的过程如下图所示: 对于下面的4×4的矩阵, 1 5 3 9 3 7 5 ...
- 我的第一个CAD程序
[步骤1]新建项目 启动Visual Studio 2010,然后选择一个C#类库,设置好名称和保存位置,点击[确定] [步骤2]添加引用文件AcMgd.dll和AcDbMgd.dll 首次使用时,[ ...
- trec 2019 fair ranking track
trec 2019 fair ranking track 最近实验室要求参加trec 2019新出的track:fair ranking track.这里整理一下该任务的思想和要求.这次tra ...
- spring-boot-plus详细配置(五)
spring-boot-plus详细配置 公共配置 application.yml