Silver Cow Party
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 22864   Accepted: 10449

Description

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input

Line 1: Three space-separated integers, respectively: NM, and X 
Lines 2..M+1: Line i+1 describes road i with three space-separated integers: AiBi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

Output

Line 1: One integer: the maximum of time any one cow must walk.

Sample Input

4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

Sample Output

10

Hint

Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

Source

求两次最短路,第一次求t到其余各点的最短路,第二次求各点到t的最短路。
最后求的是所有点到t的距离的最大值
#include <iostream>
#include <deque>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
#define maxn 100010
using namespace std;
vector<pair<int,int> > E[maxn];
int d1[maxn],d2[maxn];
int n,m,t,x[maxn],y[maxn],z[maxn];
int max(int a,int b){
if(a>=b){
return a;
}
return b;
}
void init1(){
for(int i=;i<maxn;i++){
E[i].clear();
d1[i] = 1e9;
}
}
void init2(){
for(int i=;i<maxn;i++){
E[i].clear();
d2[i] = 1e9;
}
}
void dijkstra(int t,int d[]){
d[t] = ;
priority_queue<pair<int,int> > q;
q.push(make_pair(-d[t],t));
while(!q.empty()){
int now = q.top().second;
q.pop();
for(int i=;i<E[now].size();i++){
int v = E[now][i].first;
if(d[v] > d[now] + E[now][i].second){
d[v] = d[now] + E[now][i].second;
q.push(make_pair(-d[v],v));
}
}
}
}
int main()
{
while(cin >> n >> m >> t){
init1();
for(int i=;i<m;i++){
cin >> x[i] >> y[i] >> z[i];
E[x[i]].push_back(make_pair(y[i],z[i]));
}
dijkstra(t,d1);//正求一次
init2();
for(int i=;i<m;i++){
E[y[i]].push_back(make_pair(x[i],z[i]));
} //记得在这里要把所有的路反过来
dijkstra(t,d2);//反求一次
int num = -;
for(int i=;i<=n;i++){
num = max(num,d1[i]+d2[i]);
}
cout << num << endl;
}
return ;
}

POJ 3268 Silver Cow Party 单向最短路的更多相关文章

  1. POJ 3268——Silver Cow Party——————【最短路、Dijkstra、反向建图】

    Silver Cow Party Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Su ...

  2. poj 3268 Silver Cow Party(最短路)

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 17017   Accepted: 7767 ...

  3. POJ 3268 Silver Cow Party (最短路dijkstra)

    Silver Cow Party 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/D Description One cow fr ...

  4. poj 3268 Silver Cow Party(最短路,正反两次,这个模版好)

    题目 Dijkstra,正反两次最短路,求两次和最大的. #define _CRT_SECURE_NO_WARNINGS //这是找出最短路加最短路中最长的来回程 //也就是正反两次最短路相加找最大的 ...

  5. POJ 3268 Silver Cow Party(最短路&Dijkstra)题解

    题意:有n个地点,有m条路,问从所有点走到指定点x再走回去的最短路中的最长路径 思路:用Floyd超时的,这里用的Dijkstra. Dijkstra感觉和Prim和Kruskal的思路很像啊.我们把 ...

  6. POJ 3268 Silver Cow Party 最短路—dijkstra算法的优化。

    POJ 3268 Silver Cow Party Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbe ...

  7. POJ 3268 Silver Cow Party (最短路径)

    POJ 3268 Silver Cow Party (最短路径) Description One cow from each of N farms (1 ≤ N ≤ 1000) convenientl ...

  8. POJ 3268 Silver Cow Party 最短路

    原题链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total ...

  9. POJ 3268 Silver Cow Party (双向dijkstra)

    题目链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total ...

随机推荐

  1. 精准营销、批量提取QQ群成员号码

    有时我们在做精准营销时,需要从社群里提取群成员的QQ号,群发邮件,常规的做法是手工一个个复制粘贴,这样的效率无疑是很低的,下面我来分享一个批量获取社群的QQ号方法. 需要具备以下工具: 1.大量精准Q ...

  2. 阿里云Linxu下的Mysql安装与配置

    说明:本文主要详细介绍了关于如何在阿里云ECS服务器上安装并配置Mysql 环境:Centos 7版本,阿里云部署好系统后会默认安装mariadb数据库 1.删除阿里云自带的MariaDB # rpm ...

  3. sqoop 密码别名模式 --password-alias

    sqoop要使用别名模式隐藏密码 1.首先使用命令创建别名 hadoop credential create xiaopengfei  -provider jceks://hdfs/user/pass ...

  4. 比特平面分层(一些基本的灰度变换函数)基本原理及Python实现

    1. 基本原理 在灰度图中,像素值的范围为[0, 255],即共有256级灰度.在计算机中,我们使用8比特数来表示每一个像素值.因此可以提取出不同比特层面的灰度图.比特层面分层可用于图片压缩:只储存较 ...

  5. webgl核心要素

    WebGL是一种3D绘图标准,这种绘图技术标准允许把JavaScript和OpenGL ES 2.0结合在一起,通过增加OpenGL ES 2.0的一个JavaScript绑定,提供硬件3D加速渲染, ...

  6. 搞定java String校招面试题

    今天大致的阅读了String类的源码,并刷了常见的面试题,在此做个笔记. 面试题一:判断下列程序运行结果 package String_test; public class test_1 { publ ...

  7. [转载]windows下mongodb安装与使用整理

    windows下mongodb安装与使用整理 一.首先安装mongodb 1.下载地址:http://www.mongodb.org/downloads 2.解压缩到自己想要安装的目录,比如d:\mo ...

  8. AutoCAD C#二次开发

    https://www.cnblogs.com/gisoracle/archive/2012/02/19/2357925.html using System; using System.Collect ...

  9. 为什么说java是只有值传递?

    如果你学的第一门程序语言是java可能对这个传递方式没有那么敏感,如果学了c或c++,然后再学java,那么可能对这个问题会感到困惑. 1.值传递与引用传递的概念 在将传递方式之前先理解一下形参与实参 ...

  10. Kafka 系列(三)—— Kafka 生产者详解

    一.生产者发送消息的过程 首先介绍一下 Kafka 生产者发送消息的过程: Kafka 会将发送消息包装为 ProducerRecord 对象, ProducerRecord 对象包含了目标主题和要发 ...