poj1037 [CEOI 2002]A decorative fence 题解
---恢复内容开始---
题意:
t组数据,每组数据给出n个木棒,长度由1到n,除了两端的木棒外,每一根木棒,要么比它左右的两根都长,要么比它左右的两根都短。即要求构成的排列为波浪型。对符合要求的排列按字典序(从左到右,从低到高)进行排序,求排列序号为c的排列。
刚拿到这道题时,也是一脸懵逼,感觉起来要用dp,但又不知道从哪里去下手。在网上搜了一下才大概明白。
我们可以先定义状态f[i]表示第i个木棒的合法方案数,我们考虑去转移,怎么从f[i-j]转移到f[i]呢?我们就要考虑第i-j个木棒的长度以及第i个木棒的长度关系,我们把下降的方案称为down,上升的称为up,我们将i根木棒构成的合法集合称为S(i)。
我们在选定x作为第一根木棒之后,去选择第二个木棒y,此时我们要去考虑x,y的长度关系,而在选定y之后我们又要考虑y和下一根木棒长度的关系,并且当方案不符合时我们也不便于去重新选择,此时我们的方程很难进行转移。
我们便可以考虑在此基础上进行细化f[i]=f[i][k] (k=1....i)
我们再定义状态f[i][j]表示集合S(i)中以第j短的木棒为第一个的方案数那么我们便可以写出状态转移方程
f[i][j]= \(\sum_{m=j}^p\) f[i][m] (down) + \(\sum_{n=1}^q\) f[i][n] (up) (p=i-1,q=j-1)
我们发现这个方程仍然不好转移,因为它还是没有拜托前面的约束。我们便可在问题上再进行细分
f[i][j]=f[i][j][down]+f[i][j][up]
f[i][j][[down]表示i根木棒以第j短的木棒为首的下降方案数,我们再去考虑状态转移方程
f[i[[j][down]= \(\sum_{n=1}^q\)f[i-1][n][up]
f[i[[j][up]= \(\sum_{m=j}^p\)f[i-1][m][down]
(p=i-1,q=j-1)
至此我们可以得出一个技巧,当在做dp类型的题目时,状态不好进行转移时我们可以在此基础上增加一维,如blocks,便于转移
至此问题还并没有得到解决,题目要求序列为c的方案,那么我们又改如何去求到呢?我们考虑以第1短的木棒为第一个的方案p(1),若c>p(1)则说明c不在p(1)之中,c减去p(1),我们再去考虑p(2),若还大于,则类推,当c<=p(k)时我们便可确定c在以第k短的木棒为第一根的集合内,我们再去考虑第二根,以此类推下去,求得解。
代码
#include<bits/stdc++.h>
using namespace std;
int T,n,used[25];
long long f[25][25][2],c;//0->up,1->down
void sta(int n){
memset(f,0,sizeof(f));
f[1][1][0]=f[1][1][1]=1;
for(int i=2;i<=n;++i){
for(int j=1;j<=i;++j){
for(int M=j;M<i;++M) f[i][j][0]+=f[i-1][M][1];
for(int N=1;N<j;++N) f[i][j][1]+=f[i-1][N][0];
}
}
}
void print(int n,long long cc){
long long jump=0;
int a[25];
memset(used,0,sizeof(used));
for(int i=1;i<=n;++i){
long long tmp=jump;
int k,p=0;
for(k=1;k<=n;++k){
tmp=jump;
if(!used[k]){
++p;
if(i==1) jump+=f[n][p][1]+f[n][p][0];
else{
if(k>a[i-1]&&(i<=2||a[i-2]>a[i-1])) jump+=f[n-i+1][p][1];
if(k<a[i-1]&&(i<=2||a[i-2]<a[i-1])) jump+=f[n-i+1][p][0];
}
if(jump>=cc) break;
}
}
used[k]=1;
a[i]=k;
jump=tmp;
}
for(int i=1;i<=n;++i){
printf("%d ",a[i]);
if(i==n) printf("\n");
}
}
int main(){
scanf("%d",&T);
sta(20);
while(T--){
scanf("%d %lld",&n,&c);
print(n,c);
}
return 0;
}
---恢复内容结束---
poj1037 [CEOI 2002]A decorative fence 题解的更多相关文章
- POJ1037 A decorative fence
题意 Language:Default A decorative fence Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 84 ...
- POJ1037 A decorative fence 【动态规划】
A decorative fence Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6489 Accepted: 236 ...
- A decorative fence
A decorative fence 在\(1\sim n\)的全排列\(\{a_i\}\)中,只有大小交错的(即任意一个位置i满足\(a_{i-1}<a_i>a_{i+1}ora_{i- ...
- 【POJ1037】A decorative fence(DP)
BUPT2017 wintertraining(15) #6C 题意 给长度n的数列,1,2,..,n,按依次递增递减排序,求字典序第k小的排列. 题解 dp. up[i][j]表示长度为j,以第i小 ...
- $Poj1037\ A\ Decorative\ Fence$ 计数类$DP$
Poj AcWing Description Sol 这题很数位$DP$啊, 预处理$+$试填法 $F[i][j][k]$表示用$i$块长度不同的木板,当前木板(第$i$块)在这$i$块木板中从小到 ...
- poj 1037 A decorative fence
题目链接:http://poj.org/problem?id=1037 Description Richard just finished building his new house. Now th ...
- OpenJ_Bailian - 1037 A decorative fence
Discription Richard just finished building his new house. Now the only thing the house misses is a c ...
- usaco 2002 月赛 Fiber Communications 题解
Description Farmer John wants to connect his N (1 <= N <= 1,000) barns (numbered 1..N) with a ...
- POJ1821 Fence 题解报告
传送门 1 题目描述 A team of $k (1 <= K <= 100) $workers should paint a fence which contains \(N (1 &l ...
随机推荐
- 【0730 | Day 4】Python基础(二)
Part 7 数据类型基础 一.什么是数据类型? 我们要和计算机进行交流,那么彼此肯定需要进行信息交互.我们想要让计算机认识我们,需要提供我们的身高.体重以及爱好等等.那么,不同的数据分别对应不同的数 ...
- JVM调优之经验
在生产系统中,高吞吐和低延迟一直都是JVM调优的最终目标,但这两者恰恰又是相悖的,鱼和熊掌不可兼得,所以在调优之前要清楚舍谁而取谁.一般计算任务和组件服务会偏向高吞吐,而web展示则偏向低延迟才会带来 ...
- selenium中的setUp,tearDown与setUpClass,tearDownClass的区别
def setUpClass(cls): cls.driver = webdriver.Chrome() cls.driver.maximize_window() def setUp(self): s ...
- 一段代码分清global和nonlocal
废话不多说,直接代码啊~~~ a=999 b=99999 def test1(): a=888 b=88888 print('a={}'.format(a)) print('b={}'.format( ...
- html5新特性-header,nav,footer,aside,article,section等各元素的详解
Html5新增了27个元素,废弃了16个元素,根据现有的标准规范,把HTML5的元素按优先级定义为结构性属性.级块性元素.行内语义性元素和交互性元素四大类. 下面是对各标签的详解,section.he ...
- python(自用手册)三
第三章 基础 3.1编码初识 ascii 256字母没有中文 一个字节 8位 gbk 中国 中文2字节 16位 英文1字节8位 unicode 万国码 前期 2字节 8位 后期变成4个字节 32位 u ...
- 神经网络优化算法:Dropout、梯度消失/爆炸、Adam优化算法,一篇就够了!
1. 训练误差和泛化误差 机器学习模型在训练数据集和测试数据集上的表现.如果你改变过实验中的模型结构或者超参数,你也许发现了:当模型在训练数据集上更准确时,它在测试数据集上却不⼀定更准确.这是为什么呢 ...
- Seq[找规律]----2019 年百度之星·程序设计大赛 - 初赛一:1005
Seq Accepts: 1249 Submissions: 3956 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 ...
- 小白学Python(8)——pyecharts 入门
简介: pyecharts 是一个用于生成 Echarts 图表的类库. echarts 是百度开源的一个数据可视化 JS 库,主要用于数据可视化.pyecharts 是一个用于生成 Echarts ...
- Linux use apktool problem包体变大GLIBC2.14等问题
Linux服务器在线打包遇到的问题 转载请标明出处: https://dujinyang.blog.csdn.net/article/details/80110942 本文出自:[奥特曼超人的博客] ...