Description

传说很久以前,大地上居住着一种神秘的生物:地精。 地精喜欢住在连绵不绝的山脉中。具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N 之间的正 整数。 如果一段山脉比所有与它相邻的山脉都高,则这段山脉是一个山峰。位于边 缘的山脉只有一段相邻的山脉,其他都有两段(即左边和右边)。 类似地,如果一段山脉比所有它相邻的山脉都低,则这段山脉是一个山谷。 地精们有一个共同的爱好——饮酒,酒馆可以设立在山谷之中。地精的酒馆 不论白天黑夜总是人声鼎沸,地精美酒的香味可以飘到方圆数里的地方。 地精还是一种非常警觉的生物,他们在每座山峰上都可以设立瞭望台,并轮 流担当瞭望工作,以确保在第一时间得知外敌的入侵。 地精们希望这N 段山脉每段都可以修建瞭望台或酒馆的其中之一,只有满足 这个条件的整座山脉才可能有地精居住。 现在你希望知道,长度为N 的可能有地精居住的山脉有多少种。两座山脉A 和B不同当且仅当存在一个 i,使得 Ai≠Bi。由于这个数目可能很大,你只对它 除以P的余数感兴趣。

Input

仅含一行,两个正整数 N, P。

Output

仅含一行,一个非负整数,表示你所求的答案对P取余 之后的结果。

Sample Input

4 7

Sample Output

3

Hint


对于 20%的数据,满足 N≤10;
对于 40%的数据,满足 N≤18;
对于 70%的数据,满足 N≤550;
对于 100%的数据,满足 3≤N≤4200,P≤10910^910​9​​

101810^{18}10​18​​,1<=q<=10510^510​5​​

为什么这是组合数呢?

有两种方法,都是n2,一种需要组合数,另一种不需要。

我因为算错数了,推式子的时候排除了这两种方法。。。最后才捡回来

Solution 1

设dp[i][j][st]表示目前你构成的山长度为i,以相对高度为j的山结尾,末端下降和上扬的状态分别以st的0,1表示。

想不出怎么递推?打表啊!

dp[1][1][]太特殊会被算2遍,不考虑。

发现两个表貌似只是上下倒置了,打出一个就可以。以st=1的表为例。

找规律(嘤嘤嘤我找了3天呢):dp[i][j]=∑k=1->jdp[i-1][i-k]

式子的含义是什么呢?假如我们想要长度为i,最后一座山在这i个高度的高度排名为第j。

我们把最后一座山拿走,那么如果倒数第二座山的高度比最后一座高,那么它的排名-1。否则不变。

因为趋势需要上扬,dp[i][j][0]+=dp[i-1][k][1];k<j

再考虑到倒置的问题就得到了那个式子。

 #include<cstdio>
int mod,n,dp[][],ans;
inline int modd(int p){return p>=mod?p-mod:p;}
int main(){
dp[][]=;
scanf("%d%d",&n,&mod);
for(int i=;i<=n;++i)for(int j=;j<=i;++j)dp[i&][j]=modd(dp[i&][j-]+dp[i&^][i-j+]);
for(int j=;j<=n;++j)ans=modd(ans+dp[n&][j]);
printf("%d",modd(ans<<));
}

317字节

Solution 2考虑假如你已经造出了两座山,现在需要合并它们。

考虑到所有情况,将不同的数分给两座山的情况用组合数计算。

这是可实现的,和排列计数类似,但是我没有实现,就不多说了。

公式什么的看代码吧。

 #include<cstdio>
int C[][],dp[][];
int main(){
int n,p,now=;
scanf("%d%d",&n,&p);
dp[][]=dp[][]=C[][]=C[][]=dp[][]=dp[][]=;
for(int i=;i<=n;i++,now^=){
C[now][]=;C[now][i]=;
for(int j=;j<i;j++){
if(j) C[now][j]=(C[now^][j]+C[now^][j-])%p;
dp[i][(i-j-)%]=(dp[i][(i-j-)%]+1ll*dp[j][]*dp[i-j-][(i-j-)%]%p*C[now^][j]%p)%p;
}
}
printf("%d",(dp[n][]+dp[n][])%p);
}

来自奶牛mikufun

地精部落:dp的更多相关文章

  1. 【题解】地精部落(DP)

    [题解]地精部落(DP) 设\(f_i\)表示强制第一个是谷的合法方案数 转移枚举一个排列的最大值在哪里,就把序列分成了互不相干的两个部分,把其中\(i-1\choose j-1\)的数字分配给前面部 ...

  2. BZOJ 1925: [Sdoi2010]地精部落( dp )

    dp(i,j)表示1~i的排列中, 以1~j为开头且开头是下降的合法方案数 这种数列具有对称性, 即对于一个满足题意且开头是上升的n的排列{an}, 令bn = n-an+1, 那么{bn}就是一个满 ...

  3. [BZOJ1925][SDOI2010]地精部落(DP)

    题意 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N ...

  4. wxy和zdy眼中的水题 地精部落 dp

    题目描述 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到 ...

  5. 【BZOJ】1925: [Sdoi2010]地精部落 DP+滚动数组

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1925 题意:输入一个数N(1 <= N <= 4200),问将这些数排列成折线 ...

  6. Luogu2467 SDOI2010 地精部落 DP

    传送门 一个与相对大小关系相关的$DP$ 设$f_{i,j,0/1}$表示放了$i$个,其中最后一个数字在$i$个中是第$j$大,且最后一个是极大值($1$)或极小值时($0$)的方案数.转移: $$ ...

  7. [SDOI2010]地精部落 DP

    LG传送门 DP好题 题意很简单,就是求1-n的排列,满足一个数两边的数要么都比它大要么都比它小,求这样的排列个数对\(p\)取膜的值(为了表述简单,我们称这样的排列为波动序列). 这个题我第一眼看到 ...

  8. BZOJ 1925 地精部落(DP)

    一道很经典的DP题. 题意:求n排列中波动排列的种数. 不妨考虑DP,令dp1[i][j],表示1-j的排列中,第一项为i之后递增的波动排列种数.dp2[i][j]表示1-j的排列中,第一项为i之后递 ...

  9. P2467 [SDOI2010]地精部落 DP

    传送门:https://www.luogu.org/problemnew/show/P2467 参考与学习:https://www.luogu.org/blog/user55639/solution- ...

  10. luogu2467/bzoj1925 地精部落 (dp)

    求1~n组成一个抖动序列的方案数 首先这种序列有一些非常妙妙但我发现不了的性质 1.对于一个抖动序列,如果i和i+1不相邻,则交换i和i+1,他还是个抖动序列 2.对于一个抖动序列,我把每个数拿n+1 ...

随机推荐

  1. k8s pod访问不通外网问题排查

    环境概况 自建k8s集群,主机操作系统ubuntu16.04,k8s版本v1.14, 集群网络方案calico-3.3.6. worker节点数50+,均为GPU物理服务器,服务器类型异构,如Nvid ...

  2. Linux 命令个人笔记

    [表示命令]man -f [] 显示一个命令的功能whatis [] 显示一个命令的功能ls -lR | grep '^-' | wc -l 统计一个目录下总共有多少个文件head [-n numbe ...

  3. Nginx常用命令,解决你日常运维的烦恼

    前面,跟大家简单地介绍了负载均衡和Nginx的一些基础配置(Nginx负载均衡配置实例),接下来,跟大家介绍一下Nginx的常用命令,便于日常的运维. 查看原文 停止Nginx的方法 通过之前的学习, ...

  4. CentOS 8 网卡设置

    本次测试环境是在虚拟机上测试 网卡配置文件路径:/etc/sysconfig/network-scripts/ifcfg-ens33 [root@localhost ~]# cd /etc/sysco ...

  5. 在chrome浏览器中调用IE浏览器并访问(openIE.reg自定义协议)

    在谷歌浏览器中有4种方法调用IE浏览器.如下: c++ socket通过浏览器在ie中打开指定url : vb生成exe,url访问exe启动ie并打开指定url : 通过socket实现通过http ...

  6. TP框架配合jquery进行3种方式的多图片上传

    用的TP5.1框架+jquery 一 使用form表单方式进行多图片上传 html代码: <form action="../admin/admin/cs" enctype=& ...

  7. [51nod1670] 打怪兽

    lyk在玩一个叫做“打怪兽”的游戏.游戏的规则是这样的.lyk一开始会有一个初始的能量值.每次遇到一个怪兽,若lyk的能量值>=怪兽的能量值,那么怪兽将会被打败,lyk的能量值增加1,否则lyk ...

  8. opencv::自定义角点检测

    #include <opencv2/opencv.hpp> #include <iostream> #include <math.h> using namespac ...

  9. 共轭梯度法求解协同过滤中的 ALS

    协同过滤是一类基于用户行为数据的推荐方法,主要是利用已有用户群体过去的行为或意见来预测当前用户的偏好,进而为其产生推荐.能用于协同过滤的算法很多,大致可分为:基于最近邻推荐和基于模型的推荐.其中基于最 ...

  10. MySQL常用sql语句-----数据库操作

    在数据库操作中,操作基本都是围绕增删改查来操作.简称CRUD C创建创建 R读取/检索查询 U Update修改 D删除删除 在数操作数据库时,所有的数据库语句都要以分号结束 数据库操作不区分大小写 ...