MATLAB实例:PCA降维

作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

1. iris数据

5.1,3.5,1.4,0.2,1
4.9,3.0,1.4,0.2,1
4.7,3.2,1.3,0.2,1
4.6,3.1,1.5,0.2,1
5.0,3.6,1.4,0.2,1
5.4,3.9,1.7,0.4,1
4.6,3.4,1.4,0.3,1
5.0,3.4,1.5,0.2,1
4.4,2.9,1.4,0.2,1
4.9,3.1,1.5,0.1,1
5.4,3.7,1.5,0.2,1
4.8,3.4,1.6,0.2,1
4.8,3.0,1.4,0.1,1
4.3,3.0,1.1,0.1,1
5.8,4.0,1.2,0.2,1
5.7,4.4,1.5,0.4,1
5.4,3.9,1.3,0.4,1
5.1,3.5,1.4,0.3,1
5.7,3.8,1.7,0.3,1
5.1,3.8,1.5,0.3,1
5.4,3.4,1.7,0.2,1
5.1,3.7,1.5,0.4,1
4.6,3.6,1.0,0.2,1
5.1,3.3,1.7,0.5,1
4.8,3.4,1.9,0.2,1
5.0,3.0,1.6,0.2,1
5.0,3.4,1.6,0.4,1
5.2,3.5,1.5,0.2,1
5.2,3.4,1.4,0.2,1
4.7,3.2,1.6,0.2,1
4.8,3.1,1.6,0.2,1
5.4,3.4,1.5,0.4,1
5.2,4.1,1.5,0.1,1
5.5,4.2,1.4,0.2,1
4.9,3.1,1.5,0.1,1
5.0,3.2,1.2,0.2,1
5.5,3.5,1.3,0.2,1
4.9,3.1,1.5,0.1,1
4.4,3.0,1.3,0.2,1
5.1,3.4,1.5,0.2,1
5.0,3.5,1.3,0.3,1
4.5,2.3,1.3,0.3,1
4.4,3.2,1.3,0.2,1
5.0,3.5,1.6,0.6,1
5.1,3.8,1.9,0.4,1
4.8,3.0,1.4,0.3,1
5.1,3.8,1.6,0.2,1
4.6,3.2,1.4,0.2,1
5.3,3.7,1.5,0.2,1
5.0,3.3,1.4,0.2,1
7.0,3.2,4.7,1.4,2
6.4,3.2,4.5,1.5,2
6.9,3.1,4.9,1.5,2
5.5,2.3,4.0,1.3,2
6.5,2.8,4.6,1.5,2
5.7,2.8,4.5,1.3,2
6.3,3.3,4.7,1.6,2
4.9,2.4,3.3,1.0,2
6.6,2.9,4.6,1.3,2
5.2,2.7,3.9,1.4,2
5.0,2.0,3.5,1.0,2
5.9,3.0,4.2,1.5,2
6.0,2.2,4.0,1.0,2
6.1,2.9,4.7,1.4,2
5.6,2.9,3.6,1.3,2
6.7,3.1,4.4,1.4,2
5.6,3.0,4.5,1.5,2
5.8,2.7,4.1,1.0,2
6.2,2.2,4.5,1.5,2
5.6,2.5,3.9,1.1,2
5.9,3.2,4.8,1.8,2
6.1,2.8,4.0,1.3,2
6.3,2.5,4.9,1.5,2
6.1,2.8,4.7,1.2,2
6.4,2.9,4.3,1.3,2
6.6,3.0,4.4,1.4,2
6.8,2.8,4.8,1.4,2
6.7,3.0,5.0,1.7,2
6.0,2.9,4.5,1.5,2
5.7,2.6,3.5,1.0,2
5.5,2.4,3.8,1.1,2
5.5,2.4,3.7,1.0,2
5.8,2.7,3.9,1.2,2
6.0,2.7,5.1,1.6,2
5.4,3.0,4.5,1.5,2
6.0,3.4,4.5,1.6,2
6.7,3.1,4.7,1.5,2
6.3,2.3,4.4,1.3,2
5.6,3.0,4.1,1.3,2
5.5,2.5,4.0,1.3,2
5.5,2.6,4.4,1.2,2
6.1,3.0,4.6,1.4,2
5.8,2.6,4.0,1.2,2
5.0,2.3,3.3,1.0,2
5.6,2.7,4.2,1.3,2
5.7,3.0,4.2,1.2,2
5.7,2.9,4.2,1.3,2
6.2,2.9,4.3,1.3,2
5.1,2.5,3.0,1.1,2
5.7,2.8,4.1,1.3,2
6.3,3.3,6.0,2.5,3
5.8,2.7,5.1,1.9,3
7.1,3.0,5.9,2.1,3
6.3,2.9,5.6,1.8,3
6.5,3.0,5.8,2.2,3
7.6,3.0,6.6,2.1,3
4.9,2.5,4.5,1.7,3
7.3,2.9,6.3,1.8,3
6.7,2.5,5.8,1.8,3
7.2,3.6,6.1,2.5,3
6.5,3.2,5.1,2.0,3
6.4,2.7,5.3,1.9,3
6.8,3.0,5.5,2.1,3
5.7,2.5,5.0,2.0,3
5.8,2.8,5.1,2.4,3
6.4,3.2,5.3,2.3,3
6.5,3.0,5.5,1.8,3
7.7,3.8,6.7,2.2,3
7.7,2.6,6.9,2.3,3
6.0,2.2,5.0,1.5,3
6.9,3.2,5.7,2.3,3
5.6,2.8,4.9,2.0,3
7.7,2.8,6.7,2.0,3
6.3,2.7,4.9,1.8,3
6.7,3.3,5.7,2.1,3
7.2,3.2,6.0,1.8,3
6.2,2.8,4.8,1.8,3
6.1,3.0,4.9,1.8,3
6.4,2.8,5.6,2.1,3
7.2,3.0,5.8,1.6,3
7.4,2.8,6.1,1.9,3
7.9,3.8,6.4,2.0,3
6.4,2.8,5.6,2.2,3
6.3,2.8,5.1,1.5,3
6.1,2.6,5.6,1.4,3
7.7,3.0,6.1,2.3,3
6.3,3.4,5.6,2.4,3
6.4,3.1,5.5,1.8,3
6.0,3.0,4.8,1.8,3
6.9,3.1,5.4,2.1,3
6.7,3.1,5.6,2.4,3
6.9,3.1,5.1,2.3,3
5.8,2.7,5.1,1.9,3
6.8,3.2,5.9,2.3,3
6.7,3.3,5.7,2.5,3
6.7,3.0,5.2,2.3,3
6.3,2.5,5.0,1.9,3
6.5,3.0,5.2,2.0,3
6.2,3.4,5.4,2.3,3
5.9,3.0,5.1,1.8,3

2. MATLAB程序

function [COEFF,SCORE,latent,tsquared,explained,mu,data_PCA]=pca_demo()
x=load('iris.data');
[~,d]=size(x);
k=d-1; %前k个主成分
x=zscore(x(:,1:d-1)); %归一化数据
[COEFF,SCORE,latent,tsquared,explained,mu]=pca(x);
% 1)获取样本数据 X ,样本为行,特征为列。
% 2)对样本数据中心化,得S(S = X的各列减去各列的均值)。
% 3)求 S 的协方差矩阵 C = cov(S)
% 4) 对协方差矩阵 C 进行特征分解 [P,Lambda] = eig(C);
% 5)结束。
% 1、输入参数 X 是一个 n 行 p 列的矩阵。每行代表一个样本观察数据,每列则代表一个属性,或特征。
% 2、COEFF 就是所需要的特征向量组成的矩阵,是一个 p 行 p 列的矩阵,没列表示一个出成分向量,经常也称为(协方差矩阵的)特征向量。并且是按照对应特征值降序排列的。所以,如果只需要前 k 个主成分向量,可通过:COEFF(:,1:k) 来获得。
% 3、SCORE 表示原数据在各主成分向量上的投影。但注意:是原数据经过中心化后在主成分向量上的投影。即通过:SCORE = x0*COEFF 求得。其中 x0 是中心平移后的 X(注意:是对维度进行中心平移,而非样本。),因此在重建时,就需要加上这个平均值了。
% 4、latent 是一个列向量,表示特征值,并且按降序排列。
% 5、tsquared Hotelling的每个观测值X的T平方统计量
% 6、explained 由每个主成分解释的总方差的百分比
% 7、mu 每个变量X的估计平均值
% x= bsxfun(@minus,x,mean(x,1));
data_PCA=x*COEFF(:,1:k);
latent1=100*latent/sum(latent);%将latent总和统一为100,便于观察贡献率
pareto(latent1);%调用matla画图 pareto仅绘制累积分布的前95%,因此y中的部分元素并未显示
xlabel('Principal Component');
ylabel('Variance Explained (%)');
% 图中的线表示的累积变量解释程度
print(gcf,'-dpng','Iris PCA.png');
iris_pac=data_PCA(:,1:2) ;
save iris_pca iris_pac

3. 结果

iris_pca:前两个主成分

-2.25698063306803	0.504015404227653
-2.07945911889541 -0.653216393612590
-2.36004408158421 -0.317413944570283
-2.29650366000389 -0.573446612971233
-2.38080158645275 0.672514410791076
-2.06362347633724 1.51347826673567
-2.43754533573242 0.0743137171331950
-2.22638326740708 0.246787171742162
-2.33413809644009 -1.09148977019584
-2.18136796941948 -0.447131117450110
-2.15626287481026 1.06702095645556
-2.31960685513084 0.158057945820095
-2.21665671559727 -0.706750478104682
-2.63090249246321 -0.935149145374822
-2.18497164997156 1.88366804891533
-2.24394778052703 2.71328133141014
-2.19539570001472 1.50869601039751
-2.18286635818774 0.512587093716441
-1.88775015418968 1.42633236069007
-2.33213619695782 1.15416686250116
-1.90816386828207 0.429027879924458
-2.19728429051438 0.949277150423224
-2.76490709741649 0.487882574439700
-1.81433337754274 0.106394361814184
-2.22077768737273 0.161644638073716
-1.95048968523510 -0.605862870440206
-2.04521166172712 0.265126114804279
-2.16095425532709 0.550173363315497
-2.13315967968331 0.335516397664229
-2.26121491382610 -0.313827252316662
-2.13739396044139 -0.482326258880086
-1.82582143036022 0.443780130732953
-2.59949431958629 1.82237008322707
-2.42981076672382 2.17809479520796
-2.18136796941948 -0.447131117450110
-2.20373717203888 -0.183722323644913
-2.03759040170113 0.682669420156327
-2.18136796941948 -0.447131117450110
-2.42781878392261 -0.879223932713649
-2.16329994558551 0.291749566745466
-2.27889273592867 0.466429134628597
-1.86545776627869 -2.31991965918865
-2.54929404704891 -0.452301129580194
-1.95772074352968 0.495730895348582
-2.12624969840005 1.16752080832811
-2.06842816583668 -0.689607099127106
-2.37330741591874 1.14679073709691
-2.39018434748641 -0.361180775489047
-2.21934619663183 1.02205856145225
-2.19858869176329 0.0321302060908945
1.10030752013391 0.860230593245533
0.730035752246062 0.596636784545418
1.23796221659453 0.612769614333371
0.395980710562889 -1.75229858398514
1.06901265623960 -0.211050862633647
0.383174475987114 -0.589088965722193
0.746215185580377 0.776098608766709
-0.496201068006129 -1.84269556949638
0.923129796737431 0.0302295549588077
0.00495143780650871 -1.02596403732389
-0.124281108093219 -2.64918765259090
0.437265238506424 -0.0586846858581760
0.549792126592992 -1.76666307900171
0.714770518429262 -0.184815166484382
-0.0371339806719297 -0.431350035919633
0.872966018474250 0.508295314415273
0.346844440799832 -0.189985178614466
0.152880381053472 -0.788085297090142
1.21124542423444 -1.62790202112846
0.156417163578196 -1.29875232891050
0.735791135537219 0.401126570248885
0.470792483676532 -0.415217206131680
1.22388807504403 -0.937773165086814
0.627279600231826 -0.415419947028686
0.698133985336190 -0.0632819273014206
0.870620328215835 0.249871517845242
1.25003445866275 -0.0823442389434431
1.35370481019450 0.327722365822153
0.659915359649250 -0.223597000167979
-0.0471236447211597 -1.05368247816741
0.121128417400412 -1.55837168956507
0.0140710866007487 -1.56813894313840
0.235222818975321 -0.773333046281646
1.05316323317206 -0.634774729305402
0.220677797156699 -0.279909968621073
0.430341476713787 0.852281697154445
1.04590946111265 0.520453696157683
1.03241950881290 -1.38781716762055
0.0668436673617666 -0.211910813930204
0.274505447436587 -1.32537578085168
0.271425764670620 -1.11570381243558
0.621089830946741 0.0274506709978046
0.328903506457842 -0.985598883763833
-0.372380114621411 -2.01119457605980
0.281999617970590 -0.851099454545845
0.0887557702224096 -0.174324544331148
0.223607676665854 -0.379214256409087
0.571967341693057 -0.153206717308028
-0.455486948803962 -1.53432438068788
0.251402252309636 -0.593871222060355
1.84150338645482 0.868786147264828
1.14933941416981 -0.698984450845645
2.19898270027627 0.552618780551384
1.43388176486790 -0.0498435417617587
1.86165398830779 0.290220535935809
2.74500070081969 0.785799704159685
0.357177895625210 -1.55488557249365
2.29531637451915 0.408149356863061
1.99505169024551 -0.721448439846371
2.25998344407884 1.91502747107928
1.36134878398531 0.691631011499905
1.59372545693795 -0.426818952656741
1.87796051113409 0.412949339203311
1.24890257443547 -1.16349352357816
1.45917315700813 -0.442664601834978
1.58649439864337 0.674774813132046
1.46636772102851 0.252347085727036
2.42924030093571 2.54822056527013
3.29809226641255 -0.00235343587272177
1.24979406018816 -1.71184899071237
2.03368323142868 0.904369044486726
0.970663302005081 -0.569267277965818
2.88838806680663 0.396463170625287
1.32475563655861 -0.485135293486995
1.69855040646181 1.01076227706927
1.95119099025002 0.999984474306318
1.16799162725452 -0.317831851008113
1.01637609822602 0.0653241212065782
1.78004554289349 -0.192627479858818
1.85855159177699 0.553527164026207
2.42736549094542 0.245830911619345
2.30834922706014 2.61741528404554
1.85415981777379 -0.184055790370030
1.10756129219332 -0.294997832217552
1.19347091639304 -0.814439294423699
2.79159729280499 0.841927657717863
1.57487925633390 1.06889360300461
1.34254676764379 0.420846092290459
0.920349720485088 0.0191661621187343
1.84736314547313 0.670177571688802
2.00942543830962 0.608358978317639
1.89676252747561 0.683734258412757
1.14933941416981 -0.698984450845645
2.03648602144585 0.861797777652503
1.99500750598298 1.04504903502442
1.86427657131500 0.381543630923962
1.55328823048458 -0.902290843047121
1.51576710303099 0.265903772450991
1.37179554779330 1.01296839034343
0.956095566421630 -0.0222095406309480

累计贡献率

可见:前两个主成分已经占了95%的贡献程度。这两个主成分可以近似表示整个数据。

4. pca_data.m

其中normlization.m见MATLAB实例:聚类初始化方法与数据归一化方法

function data=pca_data(data, choose)
% PCA降维,保留90%的特征信息
data = normlization(data, choose); %归一化
score = 0.90; %保留90%的特征信息
[num,dim] = size(data);
xbar = mean(data,1);
means = bsxfun(@minus, data, xbar);
cov = means'*means/num;
[V,D] = eig(cov);
eigval = diag(D);
[~,idx] = sort(eigval,'descend');
eigval = eigval(idx);
V = V(idx,:);
p = 0;
for i=1:dim
perc = sum(eigval(1:i))/sum(eigval);
if perc > score
p = i;
break;
end
end
E = V(1:p,:);
data= means*E';

参考:

Junhao Hua. Distributed Variational Bayesian Algorithms. Github, 2017.

MATLAB实例:PCA(主成成分分析)详解

MATLAB实例:PCA降维的更多相关文章

  1. MATLAB实例:PCA(主成成分分析)详解

    MATLAB实例:PCA(主成成分分析)详解 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 主成成分分析 2. MATLAB解释 详细信息请看: ...

  2. PCA降维2

    前言 本文为模式识别系列第一篇,主要介绍主成分分析算法(Principal Component Analysis,PCA)的理论,并附上相关代码.全文主要分六个部分展开: 1)简单示例.通过简单的例子 ...

  3. [综] PCA降维

    http://blog.json.tw/using-matlab-implementing-pca-dimension-reduction 設有m筆資料, 每筆資料皆為n維, 如此可將他們視為一個mx ...

  4. 机器学习公开课笔记(8):k-means聚类和PCA降维

    K-Means算法 非监督式学习对一组无标签的数据试图发现其内在的结构,主要用途包括: 市场划分(Market Segmentation) 社交网络分析(Social Network Analysis ...

  5. Python机器学习笔记 使用scikit-learn工具进行PCA降维

    之前总结过关于PCA的知识:深入学习主成分分析(PCA)算法原理.这里打算再写一篇笔记,总结一下如何使用scikit-learn工具来进行PCA降维. 在数据处理中,经常会遇到特征维度比样本数量多得多 ...

  6. PCA降维—降维后样本维度大小

    之前对PCA的原理挺熟悉,但一直没有真正使用过.最近在做降维,实际用到了PCA方法对样本特征进行降维,但在实践过程中遇到了降维后样本维数大小限制问题. MATLAB自带PCA函数:[coeff, sc ...

  7. 一步步教你轻松学主成分分析PCA降维算法

    一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简 ...

  8. PCA 降维算法详解 以及代码示例

    转载地址:http://blog.csdn.net/watkinsong/article/details/38536463 1. 前言 PCA : principal component analys ...

  9. PCA降维技术

    PCA降维技术 PCA 降维 Fly Time: 2017-2-28 主成分分析(PCA) PCA Algorithm 实例 主成分分析(PCA) 主成分分析(Principal Component ...

随机推荐

  1. Element-ui 中的Dialog 对话框

    给表头添加一个底部分割线 固定表格的内容高度 添加底部按钮 <template> <div> <el-button type="text" @clic ...

  2. 纯CSS实现自动轮播,CSS变量的定义与使用,计算属性的使用

    先来看一下实现的效果: 实现原理: HTML中使用ul>li存放图片 CSS使用CSS3的animation来完成动画 <!-- HTML --> <section class ...

  3. 02. Go 语言基本语法

    Go语言基本语法 变量.数据类型和常量是编程中最常见,也是很好理解的概念.本章将从 Go 语言的变量开始,逐步介绍各种数据类型及常量. Go 语言在很多特性上和C语言非常相近.如果读者有C语言基础,那 ...

  4. oracle中utl_raw

    RAW,类似于CHAR,声明方式RAW(L),L为长度,以字节为单位,作为数据库列最大2000,作为变量最大32767字节.LONG RAW,类似于LONG,作为数据库列最大存储2G字节的数据,作为变 ...

  5. codeforces 1027E. Inverse Coloring(计数)

    一开始发现的性质是确定了第一行后,后面的行只需要考虑和前面的行相同或者不同,整个过程只需要考虑行,构出的图一定符合性质(即同样满足列的性质),但是接下来死活定义不出状态,事实证明自己还是想的太少了 思 ...

  6. Spring Cloud 教程

    Spring Cloud系列教程: Spring Boot + Spring Cloud 构建微服务系统(一):服务注册和发现(Consul) Spring Boot + Spring Cloud 构 ...

  7. java之位运算符

    整型转二进制:Integer.toBInaryString(6) <<:左移,3<<2 = 3*2*2 = 12 >>:右移,3>>1 = 3/2 = ...

  8. Fira Code:适合程序员的编程字体

    #Fira Code Fira 是 Mozilla 公司 主推的字体系列.Fira Code 是其中的一员,专为写程序而生.出来具有等宽等基本属性外,还加入了编程连字特性(ligatures). Fi ...

  9. 转载-Java中LinkedList的一些方法—addFirst addFirst getFirst geLast removeFirst removeLast

    Java中LinkedList的一些方法—addFirst addFirst getFirst geLast removeFirst removeLast 版权声明:本文为博主原创文章,遵循CC 4. ...

  10. windows 安装使用jupyter及 基础配置

    jupyter 是什么Jupyter Notebooks 是一个交互式笔记本,支持运行 40 多种编程语言,它的本质是一个 开源的 Web 应用程序,我们可以将其用于创建和共享代码与文档,他可以支持实 ...