原文地址:gRPC proxy

gRPC代理是在gRPC层(L7)运行的无状态etcd反向代理。代理旨在减少核心etcd群集上的总处理负载。对于水平可伸缩性,它合并了监视和租约API请求。 为了保护集群免受滥用客户端的侵害,它会缓存关键范围请求。

gRPC代理支持多个etcd服务器端点。 代理启动时,它会随机选择一个etcd服务器端点来使用.该端点将处理所有请求,直到代理检测到端点故障为止。 如果gRPC代理检测到端点故障,它将切换到其他端点(如果有)以向其客户端隐藏故障。 将来可能会支持其他重试策略,例如加权轮询。

可扩展的监视 API


gRPC代理将同一键或范围上的多个客户端监视程序(c-watcher)合并为连接到etcd服务器的单个监视程序(s-watcher)。 代理将所有事件从S-watcher广播到其c-watcher。

假设N个客户端监视相同的密钥,则一个gRPC代理可以将etcd服务器上的监视负载从N减少到1。用户可以部署多个gRPC代理来进一步分配服务器负载。

在以下示例中,三个客户端监视键A。gRPC代理将三个监视程序合并,从而创建一个附加到etcd服务器的监视程序。

            +-------------+
| etcd 服务器 |
+------+------+
^ 监视 key A (s-watcher)
|
+-------+-----+
| gRPC 代理 | <-------+
| | |
++-----+------+ |监视 key A (c-watcher)
监视 key A ^ ^ 监视 key A |
(c-watcher) | | (c-watcher) |
+-------+-+ ++--------+ +----+----+
| 客户端 | | 客户端 | | 客户端 |
| | | | | |
+---------+ +---------+ +---------+

局限性

为了有效地将多个客户端监视程序合并为一个监视程序,gRPC代理在可能的情况下将新的c-watcher合并为现有的s-watcher。 由于网络延迟或缓冲的未传递事件,此合并的s-watcher可能与etcd服务器不同步。 如果未指定监视版本,则gRPC代理将不能保证c-watcher从最近的存储修订版本开始监视。 例如,如果客户端从具有修订版1000的etcd服务器监视,则该监视程序将从修订版1000开始。如果客户端从gRPC代理监视,则可以从修订版990开始监视。

类似的限制也适用于取消。 取消观察者后,etcd服务器的修订版可能大于取消响应修订版。

对于大多数用例,这两个限制不应引起问题。 将来,可能会有其他选项强制观察者绕过gRPC代理以获得更准确的修订响应。

可扩展的租约 API


为了保持其租约有效,客户端必须至少向一个etcd服务器建立一个gRPC流,以发送定期的心跳信号。 如果etcd工作负载涉及大量租约活动分布在许多客户端上,则这些流可能会导致CPU使用率过高。 为了减少核心群集上的流总数,该代理支持租约流合并。

假设N个客户端正在更新租约,则单个gRPC代理将etcd服务器上的流负载从N减少到1。部署中可能具有其他gRPC代理,以进一步在多个代理之间分配流。

在以下示例中,三个客户端更新了三个独立的租约(L1,L2和L3)。 gRPC代理将三个客户端租约流(c-stream)合并为连接到etcd服务器的单个租约保持活动流(s-stream)。 代理将客户端租用心跳从c流转发到s流,然后将响应返回到相应的c流。

          +-------------+
| etcd 服务器 |
+------+------+
^
| 心跳 L1, L2, L3
| (s-stream)
v
+-------+-----+
| gRPC 代理 +<-----------+
+---+------+--+ | 心跳 L3
^ ^ | (c-stream)
心跳 L1 | | 心跳 L2 |
(c-stream) v v (c-stream) v
+------+-+ +-+------+ +-----+--+
| 客户端 | | 客户端 | | 客户端 |
+--------+ +--------+ +--------+

客户保护滥用

gRPC代理在不违反一致性要求时会缓存请求的响应。 这可以保护etcd服务器免遭严密for循环中滥用客户端的侵害。

启动etcd gRPC代理


考虑一个etcd集群包括以下几个静态端点:

名字 地址 主机名
infra0 10.0.1.10 infra0.example.com
infra1 10.0.1.11 infra1.example.com
infra2 10.0.1.12 infra2.example.com

通过以下命令使用静态节点启动gRPC代理:

$ etcd grpc-proxy start --endpoints=infra0.example.com,infra1.example.com,infra2.example.com --listen-addr=127.0.0.1:2379

etcd gRPC启动并监听端口2379.它将客户端请求转发到上面提供的三个端点之一。

通过代理发送请求:

$ ETCDCTL_API=3 etcdctl --endpoints=127.0.0.1:2379 put foo bar
OK
$ ETCDCTL_API=3 etcdctl --endpoints=127.0.0.1:2379 get foo
foo
bar

客户端端点同步和名称解析


代理支持通过写入用户定义的端点来注册其端点以进行发现。 这有两个目的。 首先,它允许客户端将其端点与一组代理端点同步,以实现高可用性。 其次,它是etcd gRPC命名的端点提供程序。

通过提供用户定义的前缀来注册代理:

$ etcd grpc-proxy start --endpoints=localhost:2379 \
--listen-addr=127.0.0.1:23790 \
--advertise-client-url=127.0.0.1:23790 \
--resolver-prefix="___grpc_proxy_endpoint" \
--resolver-ttl=60 $ etcd grpc-proxy start --endpoints=localhost:2379 \
--listen-addr=127.0.0.1:23791 \
--advertise-client-url=127.0.0.1:23791 \
--resolver-prefix="___grpc_proxy_endpoint" \
--resolver-ttl=60

代理将会列出成员列表中的所有成员:

ETCDCTL_API=3 etcdctl --endpoints=http://localhost:23790 member list --write-out table

+----+---------+--------------------------------+------------+-----------------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT ADDRS |
+----+---------+--------------------------------+------------+-----------------+
| 0 | started | Gyu-Hos-MBP.sfo.coreos.systems | | 127.0.0.1:23791 |
| 0 | started | Gyu-Hos-MBP.sfo.coreos.systems | | 127.0.0.1:23790 |
+----+---------+--------------------------------+------------+-----------------+

这使客户端可以通过Sync自动发现代理端点:

cli, err := clientv3.New(clientv3.Config{
Endpoints: []string{"http://localhost:23790"},
})
if err != nil {
log.Fatal(err)
}
defer cli.Close() // fetch registered grpc-proxy endpoints
if err := cli.Sync(context.Background()); err != nil {
log.Fatal(err)
}

注意,如果配置的代理没有解析程序前缀,

$ etcd grpc-proxy start --endpoints=localhost:2379 \
--listen-addr=127.0.0.1:23792 \
--advertise-client-url=127.0.0.1:23792

grpc-proxy的成员列表API返回其自己的advertise-client-url

ETCDCTL_API=3 etcdctl --endpoints=http://localhost:23792 member list --write-out table

+----+---------+--------------------------------+------------+-----------------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT ADDRS |
+----+---------+--------------------------------+------------+-----------------+
| 0 | started | Gyu-Hos-MBP.sfo.coreos.systems | | 127.0.0.1:23792 |
+----+---------+--------------------------------+------------+-----------------+

命名空间


假设一个应用程序期望对整个键空间有完全控制,但是etcd集群与其他应用程序共享。 为了使所有应用程序都不会相互干扰地运行,代理可以对etcd键空间进行分区,以便客户端可以访问完整的键空间。 当给代理提供标志--namespace时,所有进入代理的客户端请求都将转换为在键上具有用户定义的前缀。 对etcd集群的访问将在前缀下,而来自代理的响应将删除该前缀;对于客户端,显然根本没有前缀。

要为代理命名空间,请通过--namespace启动:

$ etcd grpc-proxy start --endpoints=localhost:2379 \
--listen-addr=127.0.0.1:23790 \
--namespace=my-prefix/

现在,对代理的访问在etcd集群上透明地加上前缀:

$ ETCDCTL_API=3 etcdctl --endpoints=localhost:23790 put my-key abc
# OK
$ ETCDCTL_API=3 etcdctl --endpoints=localhost:23790 get my-key
# my-key
# abc
$ ETCDCTL_API=3 etcdctl --endpoints=localhost:2379 get my-prefix/my-key
# my-prefix/my-key
# abc

TLS终端


使用来自安全etcd群集的TLS的gRPC代理终端为未加密的本地端点提供服务.

使用客户端https启动单个成员etcd集群尝试:

$ etcd --listen-client-urls https://localhost:2379 --advertise-client-urls https://localhost:2379 --cert-file=peer.crt --key-file=peer.key --trusted-ca-file=ca.crt --client-cert-auth

确认客户端端口正在提供https:

# fails
$ ETCDCTL_API=3 etcdctl --endpoints=http://localhost:2379 endpoint status
# works
$ ETCDCTL_API=3 etcdctl --endpoints=https://localhost:2379 --cert=client.crt --key=client.key --cacert=ca.crt endpoint status

接下来,通过使用客户端证书连接到etcd端点https://localhost2379localhost:12379上启动gRPC代理:

$ etcd grpc-proxy start --endpoints=https://localhost:2379 --listen-addr localhost:12379 --cert client.crt --key client.key --cacert=ca.crt --insecure-skip-tls-verify &

最后,通过在http上将密钥放入代理来测试TLS终端:

$ ETCDCTL_API=3 etcdctl --endpoints=http://localhost:12379 put abc def
# OK

指标和健康


gRPC代理为--endpoints定义的etcd成员公开了/health和Prometheus/metrics端点。 另一种方法是定义一个附加URL,该URL将使用--metrics-addr参数来响应/metrics/health端点。

$ etcd grpc-proxy start \
--endpoints https://localhost:2379 \
--metrics-addr https://0.0.0.0:4443 \
--listen-addr 127.0.0.1:23790 \
--key client.key \
--key-file proxy-server.key \
--cert client.crt \
--cert-file proxy-server.crt \
--cacert ca.pem \
--trusted-ca-file proxy-ca.pem

已知问题

代理的主接口同时服务于HTTP2和HTTP/1.1。如果如上例所示,使用TLS设置了代理,则在监听接口上使用诸如cURL之类的客户端时,将要求在返回/metrics/health的请求上将协议显式设置为HTTP/1.1。通过使用--metrics-addr参数,辅助接口将没有此要求。

 $ curl --cacert proxy-ca.pem --key proxy-client.key --cert proxy-client.crt https://127.0.0.1:23790/metrics --http1.1

ETCD:gRPC代理的更多相关文章

  1. ETCD:gRPC命名与发现

    原文地址:gRPC naming and discovery etcd提供一个gRPC解析器支持备用的命名系统,该命名系统从etcd获取主机以发现gRPC服务.以下机制基于监视对以服务名称为前缀的Ke ...

  2. etcd代理组件的开发思想

    最近在一个项目中,需要使用到etcd集群来实现服务发现的功能,目的是统一管理相应的服务资源,同时也可对资源做一定的负载均衡策略.然而,项目中使用的技术栈是C++语言,github上没有合适的C++开源 ...

  3. 什么是Etcd?

    文章大部分引至:http://jolestar.com/etcd-architecture/ Etcd 按照官方介绍 Etcd is a distributed, consistent key-val ...

  4. ETCD:配置参数

    原文地址:Configuration flags etcd通过配置文件,多命令行参数和环境变量进行配置, 可重用的配置文件是YAML文件,其名称和值由一个或多个下面描述的命令行标志组成.为了使用此文件 ...

  5. ETCD:文档

    原文地址:Documentation 文档 etcd是一个分布式键值对存储,被设计为可靠的,快速的保存并提供对关键数据的访问.通过分布式锁,领导选举和写屏障使能分布式一致性.一个etcd集群旨在实现高 ...

  6. 什么是Etcd,如何运维Etcd ?

    介绍 ETCD 是一个分布式.可靠的 key-value 存储的分布式系统,用于存储分布式系统中的关键数据:当然,它不仅仅用于存储,还提供配置共享及服务发现:基于Go语言实现. ETCD的特点 简单: ...

  7. 基于知名微服务框架go-micro开发gRPC应用程序

    go-micro是golang的一个微服务框架. go-micro各个版本之间的兼容性问题一直被诟病,前几年go-micro更是分化出了两个分支: 一个延续了go-micro,只不过转到了其公司CEO ...

  8. 转:etcd:从应用场景到实现原理的全方位解读

    原文来自于:http://www.infoq.com/cn/articles/etcd-interpretation-application-scenario-implement-principle ...

  9. 分布式键值存储系统ETCD调研

    分布式键值存储系统ETCD调研 简介 etcd是一个开源的分布式键值存储工具--为CoreOS集群提供配置服务.发现服务和协同调度.Etcd运行在集群的每个coreos节点上,可以保证coreos集群 ...

随机推荐

  1. 面试题:4个zookeeper的应用场景,你知道几个?

    前言 现在聊的 topic 是分布式系统,面试官跟你聊完了 dubbo 相关的一些问题之后,已经确认你对分布式服务框架/RPC框架基本都有一些认知了.那么他可能开始要跟你聊分布式相关的其它问题了. 分 ...

  2. 14个Java并发容器,你用过几个?

    作者:acupt 前言 不考虑多线程并发的情况下,容器类一般使用ArrayList.HashMap等线程不安全的类,效率更高.在并发场景下,常会用到ConcurrentHashMap.ArrayBlo ...

  3. Mysql数据库优化一:集群(读写分离)之主从服务器的安装与配置

    Mysql数据库的集群(读写分离),说白了就是将读操作和写操作分开在不同的服务器上实现,以达到提高效率的目的. 大致原理如下: 数据库中的所有操作都是有日志记录的(前提是要打开这个日志记录功能) 1. ...

  4. java对象的实例化过程

    简单类对象的实例化过程 1.在方法区加载类: 2.在栈内存申请空间,声明变量P: 3.在堆内存中开辟空间,分配对象地址: 4.在对象空间中,对对象的属性进行默认初始化,类成员变量显示初始化: 5.构造 ...

  5. Java面试题_第一阶段(static、final、面向对象、多线程、集合、String、同步、接口、GC、JVM)

    1.1 简述static和final的用法? static:修饰属性,方法,代码块 (1)静态属性:也可叫类变量  类名.属性名  来访问 (共有的类变量与对象无关,只和类有关) 注意:类中的实例变量 ...

  6. 数据结构学习--单链表(python)

    概念 链表(linked_list)是物理存储单元上非连续的.非顺序的存储结构,数据元素的逻辑顺序 是通过链表的指针地址实现,每个元素包含两个结点,一个是存储元素的数据域 (内存空间) ,另一个是指向 ...

  7. ASP.NET Core身份验证

    asp.net core 身份验证 本文旨在演示如果使用内置的 identity 实现 asp.net core 的身份验证,不会进行其它扩展.本文将通过最简单的代码演示如何进行登录和身份验证操作. ...

  8. gohook 一个支持运行时替换 golang 函数的库实现

    运行时替换函数对 golang 这类静态语言来说并不是件容易的事情,语言层面的不支持导致只能从机器码层面做些奇怪 hack,往往艰难,但如能成功,那挣脱牢笼带来的成就感,想想就让人兴奋. gohook ...

  9. 关于python中的增量赋值的理解

    增量赋值运算符 += 和 *= 的表现取决于它们的第一个操作对象 += 操作首先会尝试调用对象的 __ iadd__方法,如果没有该方法,那么尝试调用__add__方法,所以+= 与 + 的区别实质是 ...

  10. C#本地文件下载以及FTP文件服务下载(以Pdf文件为例)

    一.C#实现本地文件下载 1.文件下载的路径  文件名称 以及文件下载之后要放的位置  这三个变量是必须要的 2.定义以下四个对象: FileWebRequest ftpWebRequest = nu ...