4563: [Haoi2016]放棋子

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 440  Solved: 285
[Submit][Status][Discuss]

Description

给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在
这个矩阵上放N枚棋子(障碍的位置不能放棋子),要求你放N个棋子也满足每行只有一枚棋子,每列只有一枚棋子
的限制,求有多少种方案。
 

Input

第一行一个N,接下来一个N*N的矩阵。N<=200,0表示没有障碍,1表示有障碍,输入格式参考样例
 

Output

一个整数,即合法的方案数。

Sample Input

2
0 1
1 0

Sample Output

1
  这道题竟然考的是高精度,吓到我了……
  一开始没读到数据范围还以为是状压裸题,然后一看到N<=200,吓一跳,然后开始琢磨动归方程,于是乎,一开始就错了的我走上了一条不归路。
  最后实在没辙,看了一眼题解,好吧,我输了。
  这道题我们可以分析为错排问题:一共 1~n n个数,对于任意数x都不在第x个位置上有多少方案数。
  为什么这么说呢?我们可以注意到,既然每一行每一列有且只有一个障碍,那么,每一行障碍的位置对于答案没有任何实际影响,如果我们按照每一行障碍的位置对行进行排序的话就转化成了第i行的棋子不能出现在第i个位置的问题,也就是我们上面说的错排问题了。
  那么错排问题的公式是什么呢?
    f[i]=f[i-1]*(i-1)+f[i-2]*(i-1)
    原理:

      第一步,把第n个元素放在一个位置,比如位置k,一共有n-1种方法;
      第二步,放编号为k的元素,这时有两种情况:⑴把它放到位置n,那么,对于剩下的n-1个元素,由于第k个元素放到了位置n,剩下n-2个元素就有f(n-2)种方法;⑵第k    个元素不把它放到位置n,这时,对于这n-1个元素,有f(n-1)种方法。(摘自百度百科)
  还是挺好玩的。
  然后,就是传统的高精度了呗。

 #include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#include <cmath>
#include <map>
#define N 10000
using namespace std;
int n,p=;
struct no
{
int a[N],l;
}f[],c;
no get(int x)
{
no aa;
aa.l=;
aa.a[]=x;
return aa;
}
no jia(no a,no b)
{
memset(c.a,,sizeof(c.a));c.l=;
for(int i=;i<=max(a.l,b.l)+;i++)
{
c.a[i]+=a.a[i]+b.a[i];
c.a[i+]+=c.a[i]/p;
c.a[i]%=p;
}
for(int i=max(a.l,b.l)+;;i--)
{
if(c.a[i])
{
c.l=i;
break;
}
}
return c;
}
no cheng(no a,no b)
{
memset(c.a,,sizeof(c.a));c.l=;
for(int i=;i<=a.l;i++)
{
for(int j=,to=i;j<=b.l;j++,to++)
{
c.a[to]+=a.a[i]*b.a[j];
c.a[to+]+=c.a[to]/p;
c.a[to]%=p;
}
}
for(int i=a.l+b.l+;;i--)
{
if(c.a[i])
{
c.l=i;
break;
}
}
return c;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
int x;
scanf("%d",&x);
}
}
f[].a[]=,f[].l=;
f[].a[]=,f[].l=;
for(int i=;i<=n;i++)
{
f[i]=cheng(get(i-),jia(f[i-],f[i-]));
}
printf("%d",f[n].a[f[n].l]);
for(int i=f[n].l-;i>=;i--)
{
printf("%04d",f[n].a[i]);
}
return ;
}

[Haoi2016]放棋子 题解的更多相关文章

  1. BZOJ4563:[HAOI2016]放棋子——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4563 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列 ...

  2. 【BZOJ4563】[Haoi2016]放棋子 错排+高精度

    [BZOJ4563][Haoi2016]放棋子 Description 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍 ...

  3. 洛谷P3182 [HAOI2016]放棋子

    P3182 [HAOI2016]放棋子 题目描述 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要 ...

  4. bzoj4563: [Haoi2016]放棋子(错排+高精)

    4563: [Haoi2016]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 387  Solved: 247[Submit][Status] ...

  5. BZOJ4563: [Haoi2016]放棋子

    Description 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在 这个矩阵上放N枚棋子(障碍的位置不能放棋子),要求你放N个棋子也满足每行 ...

  6. [HAOI2016] 放棋子及错排问题

    题目 Description 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要求你放N个棋子也满足 ...

  7. BZOJ 4563: [Haoi2016]放棋子

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 389  Solved: 248[Submit][Status][Discuss] Descriptio ...

  8. BZOJ——T 4563: [Haoi2016]放棋子

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 387  Solved: 247[Submit][Status][Discuss] Descriptio ...

  9. 洛谷 P3182 [HAOI2016]放棋子(错排问题)

    题面 luogu 题解 裸的错排问题 错排问题 百度百科:\(n\)个有序的元素应有\(n!\)个不同的排列,如若一个排列使得所有的元素不在原来的位置上,则称这个排列为错排:有的叫重排.如,1 2的错 ...

随机推荐

  1. Windows 10开发基础——XML和JSON (二)

    主要内容: Linq to XML Newtonsoft.Json.Linq来解析JSON 博客园RSS(http://www.cnblogs.com/rss)的解析 UWP调用自己实现的Web AP ...

  2. SqlServer 使用脚本创建分发服务及事务复制的可更新订阅

    原文:SqlServer 使用脚本创建分发服务及事务复制的可更新订阅 [创建使用本地分发服务器] /************************[使用本地分发服务器配置发布]*********** ...

  3. 零元学Expression Blend 4 - Chapter 5 2.5D转换的使用技巧

    原文:零元学Expression Blend 4 - Chapter 5 2.5D转换的使用技巧 本章将延续上篇零元学Expression Blend4 - Chapter 4元件重复运用的观念所制作 ...

  4. 在UWP 将BitmapImage转换为 WriteableBitmap

    原文: How to convert BitmapImage to WriteableBitmap in Universal application for windows 10? 您可以直接从文件将 ...

  5. jconsole远程监控logstash agent

    在logstash的jvm.options文件末尾添加: -Dcom.sun.management.jmxremote.port=9999   //指定jmx端口-Dcom.sun.managemen ...

  6. QT使用MySql的配置(使用addLibraryPath载入插件),编译QT的MySql驱动问题及解决方案(自己使用libmysql.lib进行编译mysql.pro,万不得已可以查看Makefile.Debug以解决问题)

    2010/04/23:Fixes : 更新批处理,以兼容WIN7. 第一次系统地玩QT,于是诞生了此预备式: [QT版本4.6.0(VS2008编译版),开发平台推荐使用Qt Creator(最新1. ...

  7. js一道面试题

    题目是这样的,按照以下函数的结果写一个sub()方法: sub(1)(2)(3);/*return 6*/ sub(4)(3)(3);/*return 10*/ 我的山寨做法: function su ...

  8. Spring中如何获取request的方法汇总及其线程安全性分析

    前言 本文将介绍在Spring MVC开发的web系统中,获取request对象的几种方法,并讨论其线程安全性.下面话不多说了,来一起看看详细的介绍吧. 概述 在使用Spring MVC开发Web系统 ...

  9. kubernetes之使用http rest api访问集群

    系列目录 在Kubernetes集群中,API Server是集群管理API的入口,由运行在Master节点上的一个名为kube-apiserver的进程提供的服务. 用户进入API可以通过kubec ...

  10. javascript (java)动态时钟

    <script language="javascript"> var t = null; t = setTimeout(time,1000);//开始执行 functi ...