RMQ算法,是一个快速求区间最值的离线算法,预处理时间复杂度O(n*log(n))查询O(1),所以是一个很快速的算法,当然这个问题用线段树同样能够解决。

问题:给出n个数ai,让你快速查询某个区间的的最值。

算法分析:

(1)预处理

这个算法就是基于DP和位运算符,我们用 dp[i][j] 表示从第 i 位开始,到第 i + 2^j -1 位的最大值或者最小值。

那么我求dp[i][j的时候可以把它分成两部分,第一部分从 i 到 i + 2 ^( j-1 ) - 1 ,第二部分从 i + 2 ^( j-1 )  到 i + 2^j - 1 次方,其实我们知道二进制数后一个是前一个的二倍,那么可以把 i ~i + 2^j  这个区间 通过2^(j-1) 分成相等的两部分, 那么转移方程很容易就写出来了。

转移方程:dp [ i ] [ j ] = max ( dp [ i ] [ j - 1 ] , dp [ i + ( 1 << ( j - 1 ) ) ] [ j - 1 ] )

以求区间最小值为例

void RMQ()
{
for(int i=1;i<=N;i++)
dp[i][0]=a[i]; //初始化, dp[i][0]就表示第i个数字本身
for(int j = 1; (1<<j) <= N; j++)
for(int i = 1; i+(1<<j)-1 <= N; i++)
dp[i][j]=min(dp[i][j-1],dp[i+(1<<j-1)][j-1]);
}

需要注意的是循环的顺序,我们发现外层是j,内层为i

(2)查询

假如我们需要查询的区间为(i,j),那么我们需要找到覆盖这个闭区间(左边界取i,右边界取j)的最小幂(可以重复,比如查询5,6,7,8,9,我们可以查询5678和6789)

因为这个区间的长度为j - i + 1,所以我们可以取k=log2( j - i + 1),则有:RMQ(A, i, j)=max{ F[i , k], F[ j - 2 ^ k + 1, k] }(可用数学证明,在此不加以论述)

eg. 要求区间[2,8]的最大值,k = log2(8 - 2 + 1)= 2,即求max(F[2, 2],F[8 - 2 ^ 2 + 1, 2]) = max(F[2, 2],F[5, 2]);

需要注意一个地方,就是<<运算符和+-运算符的优先级

比如这个表达式:5 - 1 << 2是多少?

答案是:4 * 2 * 2 = 16。所以我们要写成5 - (1 << 2)才是5-1 * 2 * 2 = 1

基于ST表的RMQ的更多相关文章

  1. POJ 3264 Balanced Lineup 【ST表 静态RMQ】

    传送门:http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total S ...

  2. ST表解决RMQ问题

    RMQ问题: RMQ(Range Minimum/Maximum Query),区间最值查询.对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间 ...

  3. ST表 求 RMQ(区间最值)

    RMQ即Range Minimum/Maximun Query,中文意思:查询一个区间的最小值/最大值 比如有这样一个数组:A{3 2 4 5 6 8 1 2 9 7},然后问你若干问题: 数组A下标 ...

  4. ST表(离线RMQ)

    离线RAQ时,预处理为O(n*lgn),查询为O(1)的算法,比较有意思的一种算法 放个模板在这可以随时看 //ST表(离线) //预处理 O(n*lgn) , 查询 O(1) #include &l ...

  5. ST函数(ST表)RMQ O(1)查询 离线

    ST算法是基于倍增的动态规划算法. #include<iostream> #include<cstdio> #include<cstdlib> #include&l ...

  6. st表、RMQ和LCA

    int lca(int x,int y) { if(de[x]<de[y]) swap(x,y); int d=de[x]-de[y]; for(int i=log2(d);i>=0;i- ...

  7. 基于稀疏表(Sparse Table)的RMQ(区间最值问题)

    在RMQ的其他实现方法中,有一种叫做ST的算法比较常见. [构建] dp[i][j]表示的是从i起连续的2j个数xi,xi+1,xi+2,...xi+2j-1( 区间为[i,i+2j-1] )的最值. ...

  8. 数据结构进阶:ST表

    简介 ST 表是用于解决 可重复贡献问题 的数据结构. 什么是可重复贡献问题? ​ 可重复贡献问题 是指对于运算 \(\operatorname{opt}\) ,满足 \(x\operatorname ...

  9. BZOJ3230 相似子串[后缀数组+二分+st表]

    BZOJ3230 相似子串 给一个串,查询排名i和j的子串longest common suffix和longest common prefix 思路其实还是蛮好想的,就是码起来有点恶心.可以发现后缀 ...

随机推荐

  1. PHP 判断手机端还是web端

    function isMobile(){ // 如果有HTTP_X_WAP_PROFILE则一定是移动设备 if (isset ($_SERVER['HTTP_X_WAP_PROFILE'])) re ...

  2. 分贝单位的本质(下半篇),dBm、dBFS、dBV的妙处你想象不到

    上半篇讲到了声音分贝的概念, 对于声音的单位:dB SPL和dB SIL,有兴趣了解并推算的朋友,可以点击以下链接(PC端效果更佳) http://www.sengpielaudio.com/calc ...

  3. Java远程下载文件到本地(http协议和ssh2协议)

    Java中java.io包为我们提供了输入流和输出流,对文件的读写基本上都依赖于这些封装好的关于流的类中来实现.前段时间遇到了以下两种需求: 1.与某系统对接,每天获取最新的图片并显示在前端页面.该系 ...

  4. 在JavaScript种遇到这样的错误如何解决XML 解析错误:格式不佳 位置:http:/... 行 27,列 32:

    相信很多人在开发的过程中都会遇到在js中解析xml文档的问题.有时候文档解析失败,但就是不知道怎么失败的,哪里格式不对.这里教大家一个方法来排查JavaScript解析xml文档格式出错的办法. 1. ...

  5. linux网关服务器

    问题 多台服务器在内网网段,其中只有一台有公网ip可以上外网,需要让所有服务器都能连接外网 解决思路 使用路由转发的方式,将拥有公网ip的服务器搭建为网关服务器,即作为统一的公网出口 所谓转发即当主机 ...

  6. 【ORACLE】删除表空间,没有删除数据文件怎么办?解决办法

    创建表空间 SQL> create tablespace TEST datafile='+DATA/rac/datafile/test01.dbf' size 1g; Tablespace cr ...

  7. 实现简易版德州扑克|学习麻瓜编程以项目为导向入门前端 HTML+CSS+JS

    实现简易版德州扑克 1.先上达到网页效果图(简易版德州扑克) 网页分为发牌区和牌池,上面为发牌区,下面是牌池区 2. 代码实现 2.1 HTML和JS代码 ` <link rel="s ...

  8. 边缘计算k8s集群SuperEdge初体验

    前言 手上一直都有一堆的学生主机,各种各样渠道途径拿来的机器. 一直管理里面都比较蛋疼,甚至也不太记得住它们在哪是什么IP,管理起来很是头疼. 有阵子空闲的时候想折腾了一下边缘计算集群方案. 希望能把 ...

  9. Nginx报504 gateway timeout错误的解决方法(小丑搞笑版。。。)

    一.今天登录我的网站,突然发现报了下面的一个错误: 我的第一反应是:超时了应该是Nginx代理没有设置超时时间,默认的超时时间估计太小了,然后就按照正常的方式用Xshell连接服务器,应该是网络或者是 ...

  10. Linux安装MYSQL并部署主从复制集群

    主节点部署 安装数据库 Ubuntu apt-get install mysql-server -y systemctl start mysql systemctl enabled mysql Cen ...