RMQ算法,是一个快速求区间最值的离线算法,预处理时间复杂度O(n*log(n))查询O(1),所以是一个很快速的算法,当然这个问题用线段树同样能够解决。

问题:给出n个数ai,让你快速查询某个区间的的最值。

算法分析:

(1)预处理

这个算法就是基于DP和位运算符,我们用 dp[i][j] 表示从第 i 位开始,到第 i + 2^j -1 位的最大值或者最小值。

那么我求dp[i][j的时候可以把它分成两部分,第一部分从 i 到 i + 2 ^( j-1 ) - 1 ,第二部分从 i + 2 ^( j-1 )  到 i + 2^j - 1 次方,其实我们知道二进制数后一个是前一个的二倍,那么可以把 i ~i + 2^j  这个区间 通过2^(j-1) 分成相等的两部分, 那么转移方程很容易就写出来了。

转移方程:dp [ i ] [ j ] = max ( dp [ i ] [ j - 1 ] , dp [ i + ( 1 << ( j - 1 ) ) ] [ j - 1 ] )

以求区间最小值为例

void RMQ()
{
for(int i=1;i<=N;i++)
dp[i][0]=a[i]; //初始化, dp[i][0]就表示第i个数字本身
for(int j = 1; (1<<j) <= N; j++)
for(int i = 1; i+(1<<j)-1 <= N; i++)
dp[i][j]=min(dp[i][j-1],dp[i+(1<<j-1)][j-1]);
}

需要注意的是循环的顺序,我们发现外层是j,内层为i

(2)查询

假如我们需要查询的区间为(i,j),那么我们需要找到覆盖这个闭区间(左边界取i,右边界取j)的最小幂(可以重复,比如查询5,6,7,8,9,我们可以查询5678和6789)

因为这个区间的长度为j - i + 1,所以我们可以取k=log2( j - i + 1),则有:RMQ(A, i, j)=max{ F[i , k], F[ j - 2 ^ k + 1, k] }(可用数学证明,在此不加以论述)

eg. 要求区间[2,8]的最大值,k = log2(8 - 2 + 1)= 2,即求max(F[2, 2],F[8 - 2 ^ 2 + 1, 2]) = max(F[2, 2],F[5, 2]);

需要注意一个地方,就是<<运算符和+-运算符的优先级

比如这个表达式:5 - 1 << 2是多少?

答案是:4 * 2 * 2 = 16。所以我们要写成5 - (1 << 2)才是5-1 * 2 * 2 = 1

基于ST表的RMQ的更多相关文章

  1. POJ 3264 Balanced Lineup 【ST表 静态RMQ】

    传送门:http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total S ...

  2. ST表解决RMQ问题

    RMQ问题: RMQ(Range Minimum/Maximum Query),区间最值查询.对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间 ...

  3. ST表 求 RMQ(区间最值)

    RMQ即Range Minimum/Maximun Query,中文意思:查询一个区间的最小值/最大值 比如有这样一个数组:A{3 2 4 5 6 8 1 2 9 7},然后问你若干问题: 数组A下标 ...

  4. ST表(离线RMQ)

    离线RAQ时,预处理为O(n*lgn),查询为O(1)的算法,比较有意思的一种算法 放个模板在这可以随时看 //ST表(离线) //预处理 O(n*lgn) , 查询 O(1) #include &l ...

  5. ST函数(ST表)RMQ O(1)查询 离线

    ST算法是基于倍增的动态规划算法. #include<iostream> #include<cstdio> #include<cstdlib> #include&l ...

  6. st表、RMQ和LCA

    int lca(int x,int y) { if(de[x]<de[y]) swap(x,y); int d=de[x]-de[y]; for(int i=log2(d);i>=0;i- ...

  7. 基于稀疏表(Sparse Table)的RMQ(区间最值问题)

    在RMQ的其他实现方法中,有一种叫做ST的算法比较常见. [构建] dp[i][j]表示的是从i起连续的2j个数xi,xi+1,xi+2,...xi+2j-1( 区间为[i,i+2j-1] )的最值. ...

  8. 数据结构进阶:ST表

    简介 ST 表是用于解决 可重复贡献问题 的数据结构. 什么是可重复贡献问题? ​ 可重复贡献问题 是指对于运算 \(\operatorname{opt}\) ,满足 \(x\operatorname ...

  9. BZOJ3230 相似子串[后缀数组+二分+st表]

    BZOJ3230 相似子串 给一个串,查询排名i和j的子串longest common suffix和longest common prefix 思路其实还是蛮好想的,就是码起来有点恶心.可以发现后缀 ...

随机推荐

  1. 关于.NET中的控制反转(一)- 概念与定义

    一.控制反转 1:类与类的依赖 依赖是面向对象中用来描述类与类之间一种关系的概念.两个相对独立的对象,当一个对象负责构造另一个对象的实例,或者依赖另一个对象的服务,这样的两个对象之间主要体现为依赖关系 ...

  2. tf.argmax(vector,axis)函数的使用

    1.返回值 vector为向量,返回行或列的最大值的索引号: vector为矩阵,返回值是向量,返回每行或每列的最大值的索引号. 2.参数 vector为向量或者矩阵 axis = 0 或1 0:返回 ...

  3. 【C++】《C++ Primer 》第八章

    第八章 IO库 一.IO类 1. 标准库定义的IO类型 头文件 作用 类型 iostream 从标准流中读写数据 istream, wistream 从流读取数据 ostream, wostream ...

  4. self-taught CS resouce recommendation

    https://github.com/keithnull/TeachYourselfCS-CN/blob/master/TeachYourselfCS-CN.md#%E8%AE%A1%E7%AE%97 ...

  5. Java并发包源码学习系列:详解Condition条件队列、signal和await

    目录 Condition接口 AQS条件变量的支持之ConditionObject内部类 回顾AQS中的Node void await() 添加到条件队列 Node addConditionWaite ...

  6. 摆脱 996——GitHub 热点速览 v.21.03

    作者:HelloGitHub-小鱼干 Twitter 有位程序员总结了本周的 GitHub 中文程序员的看点:国内程序员日常--考公务员.996.抢茅台.刷算法.整健康码.在本期热点速览里,小鱼干收录 ...

  7. 视频画面中实现人脸遮挡教程 - 基于 TensorFlow 实现

    在进行视频通话时,我们往往需要对画面进行一些实时分析,例如识别画面里的人.车.动物等等.这节里我们将使用时信魔方的人脸监视模块实现人脸被手部遮挡的检测,如下图所示效果: 预备知识 时信魔方的客户端使用 ...

  8. git 基本命令和操作

    设置全局用户名+密码 $ git config --global user.name 'runoob' $ git config --global user.email test@runoob.com ...

  9. ElasticSearch极简入门总结

    一,目录 安装es 项目添加maven依赖 es客户端组件注入到spring容器中 es与mysql表结构对比 索引的删除创建 文档的crud es能快速搜索的核心-倒排索引 基于倒排索引的精确搜索. ...

  10. Windows 2008server部署pxe启动安装windows系统

    前期准备: 需安装的角色有:AD域-DHCP服务器-DNS服务器-Windows部署服务,我是将这几个服务都安装在一台vps上,C盘50G,D盘100G 安装好后角色会列出所安装的服务,如下图: 1. ...