RMQ算法,是一个快速求区间最值的离线算法,预处理时间复杂度O(n*log(n))查询O(1),所以是一个很快速的算法,当然这个问题用线段树同样能够解决。

问题:给出n个数ai,让你快速查询某个区间的的最值。

算法分析:

(1)预处理

这个算法就是基于DP和位运算符,我们用 dp[i][j] 表示从第 i 位开始,到第 i + 2^j -1 位的最大值或者最小值。

那么我求dp[i][j的时候可以把它分成两部分,第一部分从 i 到 i + 2 ^( j-1 ) - 1 ,第二部分从 i + 2 ^( j-1 )  到 i + 2^j - 1 次方,其实我们知道二进制数后一个是前一个的二倍,那么可以把 i ~i + 2^j  这个区间 通过2^(j-1) 分成相等的两部分, 那么转移方程很容易就写出来了。

转移方程:dp [ i ] [ j ] = max ( dp [ i ] [ j - 1 ] , dp [ i + ( 1 << ( j - 1 ) ) ] [ j - 1 ] )

以求区间最小值为例

void RMQ()
{
for(int i=1;i<=N;i++)
dp[i][0]=a[i]; //初始化, dp[i][0]就表示第i个数字本身
for(int j = 1; (1<<j) <= N; j++)
for(int i = 1; i+(1<<j)-1 <= N; i++)
dp[i][j]=min(dp[i][j-1],dp[i+(1<<j-1)][j-1]);
}

需要注意的是循环的顺序,我们发现外层是j,内层为i

(2)查询

假如我们需要查询的区间为(i,j),那么我们需要找到覆盖这个闭区间(左边界取i,右边界取j)的最小幂(可以重复,比如查询5,6,7,8,9,我们可以查询5678和6789)

因为这个区间的长度为j - i + 1,所以我们可以取k=log2( j - i + 1),则有:RMQ(A, i, j)=max{ F[i , k], F[ j - 2 ^ k + 1, k] }(可用数学证明,在此不加以论述)

eg. 要求区间[2,8]的最大值,k = log2(8 - 2 + 1)= 2,即求max(F[2, 2],F[8 - 2 ^ 2 + 1, 2]) = max(F[2, 2],F[5, 2]);

需要注意一个地方,就是<<运算符和+-运算符的优先级

比如这个表达式:5 - 1 << 2是多少?

答案是:4 * 2 * 2 = 16。所以我们要写成5 - (1 << 2)才是5-1 * 2 * 2 = 1

基于ST表的RMQ的更多相关文章

  1. POJ 3264 Balanced Lineup 【ST表 静态RMQ】

    传送门:http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total S ...

  2. ST表解决RMQ问题

    RMQ问题: RMQ(Range Minimum/Maximum Query),区间最值查询.对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间 ...

  3. ST表 求 RMQ(区间最值)

    RMQ即Range Minimum/Maximun Query,中文意思:查询一个区间的最小值/最大值 比如有这样一个数组:A{3 2 4 5 6 8 1 2 9 7},然后问你若干问题: 数组A下标 ...

  4. ST表(离线RMQ)

    离线RAQ时,预处理为O(n*lgn),查询为O(1)的算法,比较有意思的一种算法 放个模板在这可以随时看 //ST表(离线) //预处理 O(n*lgn) , 查询 O(1) #include &l ...

  5. ST函数(ST表)RMQ O(1)查询 离线

    ST算法是基于倍增的动态规划算法. #include<iostream> #include<cstdio> #include<cstdlib> #include&l ...

  6. st表、RMQ和LCA

    int lca(int x,int y) { if(de[x]<de[y]) swap(x,y); int d=de[x]-de[y]; for(int i=log2(d);i>=0;i- ...

  7. 基于稀疏表(Sparse Table)的RMQ(区间最值问题)

    在RMQ的其他实现方法中,有一种叫做ST的算法比较常见. [构建] dp[i][j]表示的是从i起连续的2j个数xi,xi+1,xi+2,...xi+2j-1( 区间为[i,i+2j-1] )的最值. ...

  8. 数据结构进阶:ST表

    简介 ST 表是用于解决 可重复贡献问题 的数据结构. 什么是可重复贡献问题? ​ 可重复贡献问题 是指对于运算 \(\operatorname{opt}\) ,满足 \(x\operatorname ...

  9. BZOJ3230 相似子串[后缀数组+二分+st表]

    BZOJ3230 相似子串 给一个串,查询排名i和j的子串longest common suffix和longest common prefix 思路其实还是蛮好想的,就是码起来有点恶心.可以发现后缀 ...

随机推荐

  1. PHP 打水印功能

    /** * @param $str 需要打水印的文字 * @param int $size 文字大小 * @param int $red 文字的颜色 rgb r * @param int $gree ...

  2. Java菜鸟在IP问题踩坑了

    之前有做过获取客户端公网IP的项目 一般都是 正常的request.getRemoteAddr 或者request.getRemoteHost 可获取到客户端的公网IP, 或者项目部署在有nginx代 ...

  3. LeetCode876 链表的中间结点

    给定一个带有头结点 head 的非空单链表,返回链表的中间结点. 如果有两个中间结点,则返回第二个中间结点. 示例 1: 输入:[1,2,3,4,5] 输出:此列表中的结点 3 (序列化形式:[3,4 ...

  4. IO软件层次结构与假脱机技术

    IO软件层次结构 用户层软件->设备独立性软件->设备驱动软件->中断处理程序->硬件 用户层软件实现与用户交互的接口,用户可直接使用该层提供的,与IO操作相关的库函数对设备进 ...

  5. nodejs中的文件系统

    . 目录 简介 nodejs中的文件系统模块 Promise版本的fs 文件描述符 fs.stat文件状态信息 fs的文件读写 fs的文件夹操作 path操作 简介 nodejs使用了异步IO来提升服 ...

  6. [GKCTF2020]老八小超市儿

    题目来自buu 一.题目初探 首先是一个shopxo搭建的演示站,通过扫描后台得到如下的网页 二.题目解答 首先是找到后台登陆的admin.php,然后通过百度找到shopxo的默认管理员登陆账号和密 ...

  7. JCO RFC destination

    一:登陆PI的GUI,进入事物SM59,创建T类型RFC destinations如下: AI_RUNTIME_JCOSERVER  :used for the mapping runtime, va ...

  8. uni-app开发经验分享十二: Android平台应用启动时读写手机存储、访问设备信息(如IMEI)等权限策略及提示信息

    Android平台从6.0(API23)开始系统对权限的管理更加严格,所有涉及敏感权限都需要用户授权允许才能获取.因此一些应用基础业务逻辑需要的权限会在应用启动时申请,并引导用户允许. 读写手机存储权 ...

  9. 如何配置 Slf4j

    一,前言 日常开发中经常需要在控制台输出一些信息,如果这些东西不加管理,那么很容易就被输出信息淹没.幸好,我们有日志相关的库来帮助我们格式化控制台的输出. 这篇文章将介绍如何配置 Slf4j 及其具体 ...

  10. docker容器的基本命令

      #安装docker yum -y install docker systemctl start docker.service systemctl status docker systemctl e ...