前序遍历 递归版

编程思想

即借助系统栈,效率较低。二叉树的前序遍历规则:1. 访问根结点; 2. 遍历左子树; 3. 遍历右子树

编程实现

//树的定义
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
private:
void rec(TreeNode* root,vector<int> &ret){
if(root != nullptr){
ret.push_back(root->val);
rec(root->left,ret);
rec(root->right,ret);
}
}
public:
vector<int> preorderTraversal(TreeNode* root) {
vector<int> ret;
rec(root,ret);
return ret;
}
};

编程总结

常规方法,注意向量要用引用。


前序遍历 迭代版

编程思想

使用了一个辅助结点p,这种写法其实可以看作是一个模版,对应的还有中序和后序的模版写法,形式很统一,方便于记忆。
辅助结点p初始化为根结点,while循环的条件是栈不为空或者辅助结点p不为空,在循环中首先判断如果辅助结点p存在,那么先将p加入栈中,然后将p的结点值加入结果res中,此时p指向其左子结点。否则如果p不存在的话,表明没有左子结点,我们取出栈顶结点,将p指向栈顶结点的右子结点。

编程实现

class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
vector<int> res;
stack<TreeNode*> s;
TreeNode *p = root;
while (!s.empty() || p) {
if (p) {
s.push(p);
res.push_back(p->val);
p = p->left;
}
else {
TreeNode *t = s.top();
s.pop();
p = t->right;
}
}
return res;
}
};

题目总结

在掌握规律的前提下,使用模板记忆。


中序遍历 递归版

编程思想

即借助系统栈,效率较低。二叉树的前序遍历规则:1. 遍历左子树; 2. 访问根结点; 3. 遍历右子树

编程实现

class Solution {
private:
void rec(TreeNode* root,vector<int> &ret){
if(root != NULL){
rec(root->left,ret);
ret.push_back(root->val);
rec(root->right,ret);
}
}
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> ret;
rec(root,ret);
return ret;
}
};

题目总结

常规。


中序遍历 迭代版

编程思想

使用了一个辅助结点p,这种写法其实可以看作是一个模版,对应的还有前序和后序的模版写法,形式很统一,方便于记忆。
因为中序遍历的顺序是左-根-右,故与前序不同的是把结点值加入结果res的步骤从if中移动到了else中。
辅助结点p初始化为根结点,while循环的条件是栈不为空或者辅助结点p不为空,在循环中首先判断如果辅助结点p存在;那么先将p加入栈中,将p指向栈顶结点的左子结点。否则如果p不存在的话,表明没有左子结点,我们取出栈顶结点,然后将p的结点值加入结果res中,此时p指向其右子结点。

编程实现

class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> res;
stack<TreeNode*> s;
TreeNode *p = root;
while (!s.empty() || p) {
if (p) {
s.push(p);
p = p->left;
}
else {
TreeNode *t = s.top();
s.pop();
res.push_back(t->val);
p = t->right;
}
}
return res;
}
};

题目总结

注意与前序遍历的区别和联系,因为中序遍历的顺序是左-根-右,故与前序不同的是把结点值加入结果res的步骤从if中移动到了else中。


后序遍历 递归版

编程思想

即借助系统栈,效率较低。二叉树的前序遍历规则: 1. 遍历左子树;2. 遍历右子树;3. 访问根结点;

编程实现

class Solution {
private:
void rec(TreeNode* root,vector<int> &ret){
if(root != NULL){
rec(root->left,ret);
rec(root->right,ret);
ret.push_back(root->val);
}
}
public:
vector<int> postorderTraversal(TreeNode* root) {
vector<int> ret;
rec(root,ret);
return ret;
}
};

编程总结

常规。


后序遍历 迭代版

编程思想

使用了一个辅助结点p,这种写法其实可以看作是一个模版,对应的还有前序和中序的模版写法,形式很统一,方便于记忆。
由于后序遍历的顺序是左-右-根,而前序遍历的顺序是根-左-右,二者其实还是很相近的,我们可以先在先序遍历的方法上做些小改动,使其遍历顺序变为根-右-左,然后翻转一下,就是左-右-根了。翻转的方法,是反向加入结果res,每次都在结果res的开头加入结点值,而改变先序遍历的顺序就只要改变一下入栈顺序,先左后右,这样出栈处理的时候就是先右后左了。一定要对比前序遍历记忆!!!

拓展:当访问一个结点*p时,栈中结点恰好为*p结点的所有祖先。从栈底到栈底结点再加上*p结点,刚好构成从根节点到*p结点的一条路径。这一特性非常重要,如求根结点到某结点的路径;求两个结点的最近公共祖先;均可用这个思想。

编程实现

class Solution {
public:
vector<int> postorderTraversal(TreeNode* root) {
vector<int> res;
stack<TreeNode*> s;
TreeNode *p = root;
while (!s.empty() || p) {
if (p) {
s.push(p);
res.insert(res.begin(), p->val); //反向添加,而前序是正向添加
p = p->right;  //与前序对比
}
else {
TreeNode *t = s.top();
s.pop();
p = t->left;
}
}
return res;
}
};

编程总结

拓展思想很重要!!


层次遍历 版本1

编程思想

进行常规层次遍历,需要借助一个队列。
先将根节点入队,然后出队,访问该根结点,如果它有左子树,则将左子树根节点入队,形成下一层;如果它有右子树,则将右子树根结点入队,形成下一层。然后出队,访问该结点,如此反复,直至队列为空。看代码比较容易懂。
补充:
queue 的基本操作有:
入队,如例:q.push(x); 将x 接到队列的末端。
出队,如例:q.pop(); 弹出队列的第一个元素,注意,并不会返回被弹出元素的值。
访问队首元素,如例:q.front(),即最早被压入队列的元素。
访问队尾元素,如例:q.back(),即最后被压入队列的元素。
判断队列空,如例:q.empty(),当队列空时,返回true。
访问队列中的元素个数,如例:q.size()

编程实现

class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) { vector<vector<int>>v;
queue<TreeNode*>q;
q.push(root); //根节点入队
if(root == NULL)
return v ;
while(!q.empty()){ //队列不空
vector<int>vv;
queue<TreeNode*> next ; // 建立第二个队列 用来存放下一层的结点
while(!q.empty()){ //遍历当前层的结点 这层循环是核心 其他都是为了满足OJ输出 TreeNode* tre = q.front() ;
vv.push_back(tre->val); //访问该结点,为了满足输出要求,所以有点复杂,
q.pop(); //对头元素出队
if(tre->left!=NULL){ //它有左子树
next.push(tre->left);
}
if(tre->right!=NULL){ //它有右子树
next.push(tre->right);
}
}
v.push_back(vv);
q=next; // // 遍历完后进入下一层
}
return v;
}
};

编程总结

层次遍历往往要用到队列,要对队列的基本操作熟悉,注意二维向量的生成。


层次遍历 版本2

编程思想

给定一个二叉树,返回其节点值自底向上的层次遍历。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历)。

同版本一类似,只不过需要多一个栈,把每层返回的结点加入栈中,最后输出。

编程实现

class Solution {
public:
vector<vector<int>> levelOrderBottom(TreeNode* root) {
vector<vector<int>>v;
stack<vector<int>>s;
queue<TreeNode*>q;
q.push(root); //根节点入队
if(root == NULL)
return v ;
while(!q.empty()){ //队列不空
vector<int>vv;
queue<TreeNode*> next ; // 建立第二个队列 用来存放下一层的结点 while(!q.empty()){ //遍历每层的结点 这层循环是核心 其他都是为了满足OJ输出 TreeNode* tre = q.front() ;
vv.push_back(tre->val); //访问该结点,为了满足输出要求,所以有点复杂,
q.pop(); //对头元素出队
if(tre->left!=NULL){ //它有左子树
next.push(tre->left);
}
if(tre->right!=NULL){ //它有右子树
next.push(tre->right);
} }
s.push(vv); //将每层结点入栈
//v.push_back(vv);
q=next; // // 遍历完后进入下一层
}
while(!s.empty()){ //将每层结点倒序输出
v.push_back(s.top());
s.pop();
}
return v;
}
};

编程总结

注意其他数据结构的配合使用。

剑指offer 树的基本操作:四种遍历方式的更多相关文章

  1. 剑指Offer(二十四):二叉树中和为某一值的路径

    剑指Offer(二十四):二叉树中和为某一值的路径 搜索微信公众号:'AI-ming3526'或者'计算机视觉这件小事' 获取更多算法.机器学习干货 csdn:https://blog.csdn.ne ...

  2. 剑指Offer(三十四):第一个只出现一次的字符

    剑指Offer(三十四):第一个只出现一次的字符 搜索微信公众号:'AI-ming3526'或者'计算机视觉这件小事' 获取更多算法.机器学习干货 csdn:https://blog.csdn.net ...

  3. lua中for循环的四种遍历方式

    lua中for的四种遍历方式区别 table.maxn 取最大的整数key #table 从1开始的顺序整数最大值,如1,2,3,6 #table == 3   key,value pairs 取每一 ...

  4. list的四种遍历方式

    1.手先增强for循环和iterator遍历的效果是一样的,也就说 增强for循环的内部也就是调用iteratoer实现的,但是增强for循环 有些缺点,例如不能在增强循环里动态的删除集合内容.不能获 ...

  5. Map 的四种遍历方式

    Map 的四种遍历方式 import java.util.HashMap; import java.util.Iterator; import java.util.Map; public class ...

  6. java集合四种遍历方式

    package conection; import java.util.Iterator;import java.util.LinkedList;import java.util.List; publ ...

  7. map的四种遍历方式

    map是Java中非常常用的一种数据结构,但map不同于set和list都继承自Collection接口. 所以map没有实现Collection的Iterator 方法,自身没有迭代器来遍历元素. ...

  8. Map集合的四种遍历方式

    很久以前写的代码,和上一个做比较吧!便于以后查看 import java.util.HashMap; import java.util.Iterator; import java.util.Map; ...

  9. java list 的 四种遍历方式

    在java中遍历一个list对象的方法主要有以下四种: 1. For Loop —— 普通for循环 2. Advanced For Loop —— 高级for循环 3. Iterator Loop ...

随机推荐

  1. AcWing 334. K匿名序列

    大型补档计划 题目链接 就是把序列分成无数段,每段长度 $ >= K$,然后 \([l, r]\) 这段的花费是 \(S[r] - S[l - 1] - (r - l + 1) * a[l]\) ...

  2. webstorm2017.02版本如何使用material theme

    本想废话一番,表达对material theme的喜欢.还是直接说方法吧~ file-settings-Plugins-Browse repositories-搜索 material theme -选 ...

  3. SpringBoot 拦截器和自定义注解判断请求是否合法

    应用场景举例: 当不同身份的用户请求一个接口时,用来校验用户某些身份,这样可以对单个字段数据进行精确权限控制,具体看代码注释 自定义注解 /** * 对比请求的用户身份是否符合 * @author l ...

  4. windows 远程连接报错

    在windows7上或者windows10上远程连接服务器报错("连接错误"),试了网上的方法,发现是服务器安装ssl证书关闭了ssh服务,开启ssh服务后,重启电脑就可以解决这个 ...

  5. SQL Server NULL值用法及处理详解

    用法如下: 1.如果表中的某个列是可选的,那么我们可以在不向该列添加值的情况下插入新记录或更新已有的记录,这意味着该字段将以 NULL 值保存. 2.NULL 用作未知的或不适用的值的占位符. 3.定 ...

  6. JavaSE02-基本语法

    1.注释 注释是对代码的解释和说明文字,可以提高程序的可读性,因此在程序中添加必要的注释文字十分重要. Java中的注释分为三种: 单行注释.单行注释的格式是使用//,从//开始至本行结尾的文字将作为 ...

  7. Web服务器-正则表达式-小例子(3.1.2)

    @ 目录 1.邮箱 2.手机号码 关于作者 1.邮箱 import re def main(): email = input("请输入一个邮件地址:") ret = re.matc ...

  8. 基于Layuimini的自己封装后台模板

    基于Layui的后台模板,正在开发中 交流qq群:1062635741 邮箱:zhangqueque.foxmail.com GitHub:https://github.com/ZhangQueque ...

  9. Python 进阶——如何正确使用 yield?

    本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理 在 Python 开发中, yield 关键字的使用其实较为频繁,例如大集合的生成,简化代码结构.协 ...

  10. 最全Python正则表达式来袭

    前言 正则表达式是对字符串(包括普通字符(例如,a 到 z 之间的字母)和特殊字符(称为"元字符"))操作的一种逻辑公式,就是用事先定义好的一些特定字符.及这些特定字符的组合,组成 ...