前序遍历 递归版

编程思想

即借助系统栈,效率较低。二叉树的前序遍历规则:1. 访问根结点; 2. 遍历左子树; 3. 遍历右子树

编程实现

//树的定义
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
private:
void rec(TreeNode* root,vector<int> &ret){
if(root != nullptr){
ret.push_back(root->val);
rec(root->left,ret);
rec(root->right,ret);
}
}
public:
vector<int> preorderTraversal(TreeNode* root) {
vector<int> ret;
rec(root,ret);
return ret;
}
};

编程总结

常规方法,注意向量要用引用。


前序遍历 迭代版

编程思想

使用了一个辅助结点p,这种写法其实可以看作是一个模版,对应的还有中序和后序的模版写法,形式很统一,方便于记忆。
辅助结点p初始化为根结点,while循环的条件是栈不为空或者辅助结点p不为空,在循环中首先判断如果辅助结点p存在,那么先将p加入栈中,然后将p的结点值加入结果res中,此时p指向其左子结点。否则如果p不存在的话,表明没有左子结点,我们取出栈顶结点,将p指向栈顶结点的右子结点。

编程实现

class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
vector<int> res;
stack<TreeNode*> s;
TreeNode *p = root;
while (!s.empty() || p) {
if (p) {
s.push(p);
res.push_back(p->val);
p = p->left;
}
else {
TreeNode *t = s.top();
s.pop();
p = t->right;
}
}
return res;
}
};

题目总结

在掌握规律的前提下,使用模板记忆。


中序遍历 递归版

编程思想

即借助系统栈,效率较低。二叉树的前序遍历规则:1. 遍历左子树; 2. 访问根结点; 3. 遍历右子树

编程实现

class Solution {
private:
void rec(TreeNode* root,vector<int> &ret){
if(root != NULL){
rec(root->left,ret);
ret.push_back(root->val);
rec(root->right,ret);
}
}
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> ret;
rec(root,ret);
return ret;
}
};

题目总结

常规。


中序遍历 迭代版

编程思想

使用了一个辅助结点p,这种写法其实可以看作是一个模版,对应的还有前序和后序的模版写法,形式很统一,方便于记忆。
因为中序遍历的顺序是左-根-右,故与前序不同的是把结点值加入结果res的步骤从if中移动到了else中。
辅助结点p初始化为根结点,while循环的条件是栈不为空或者辅助结点p不为空,在循环中首先判断如果辅助结点p存在;那么先将p加入栈中,将p指向栈顶结点的左子结点。否则如果p不存在的话,表明没有左子结点,我们取出栈顶结点,然后将p的结点值加入结果res中,此时p指向其右子结点。

编程实现

class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> res;
stack<TreeNode*> s;
TreeNode *p = root;
while (!s.empty() || p) {
if (p) {
s.push(p);
p = p->left;
}
else {
TreeNode *t = s.top();
s.pop();
res.push_back(t->val);
p = t->right;
}
}
return res;
}
};

题目总结

注意与前序遍历的区别和联系,因为中序遍历的顺序是左-根-右,故与前序不同的是把结点值加入结果res的步骤从if中移动到了else中。


后序遍历 递归版

编程思想

即借助系统栈,效率较低。二叉树的前序遍历规则: 1. 遍历左子树;2. 遍历右子树;3. 访问根结点;

编程实现

class Solution {
private:
void rec(TreeNode* root,vector<int> &ret){
if(root != NULL){
rec(root->left,ret);
rec(root->right,ret);
ret.push_back(root->val);
}
}
public:
vector<int> postorderTraversal(TreeNode* root) {
vector<int> ret;
rec(root,ret);
return ret;
}
};

编程总结

常规。


后序遍历 迭代版

编程思想

使用了一个辅助结点p,这种写法其实可以看作是一个模版,对应的还有前序和中序的模版写法,形式很统一,方便于记忆。
由于后序遍历的顺序是左-右-根,而前序遍历的顺序是根-左-右,二者其实还是很相近的,我们可以先在先序遍历的方法上做些小改动,使其遍历顺序变为根-右-左,然后翻转一下,就是左-右-根了。翻转的方法,是反向加入结果res,每次都在结果res的开头加入结点值,而改变先序遍历的顺序就只要改变一下入栈顺序,先左后右,这样出栈处理的时候就是先右后左了。一定要对比前序遍历记忆!!!

拓展:当访问一个结点*p时,栈中结点恰好为*p结点的所有祖先。从栈底到栈底结点再加上*p结点,刚好构成从根节点到*p结点的一条路径。这一特性非常重要,如求根结点到某结点的路径;求两个结点的最近公共祖先;均可用这个思想。

编程实现

class Solution {
public:
vector<int> postorderTraversal(TreeNode* root) {
vector<int> res;
stack<TreeNode*> s;
TreeNode *p = root;
while (!s.empty() || p) {
if (p) {
s.push(p);
res.insert(res.begin(), p->val); //反向添加,而前序是正向添加
p = p->right;  //与前序对比
}
else {
TreeNode *t = s.top();
s.pop();
p = t->left;
}
}
return res;
}
};

编程总结

拓展思想很重要!!


层次遍历 版本1

编程思想

进行常规层次遍历,需要借助一个队列。
先将根节点入队,然后出队,访问该根结点,如果它有左子树,则将左子树根节点入队,形成下一层;如果它有右子树,则将右子树根结点入队,形成下一层。然后出队,访问该结点,如此反复,直至队列为空。看代码比较容易懂。
补充:
queue 的基本操作有:
入队,如例:q.push(x); 将x 接到队列的末端。
出队,如例:q.pop(); 弹出队列的第一个元素,注意,并不会返回被弹出元素的值。
访问队首元素,如例:q.front(),即最早被压入队列的元素。
访问队尾元素,如例:q.back(),即最后被压入队列的元素。
判断队列空,如例:q.empty(),当队列空时,返回true。
访问队列中的元素个数,如例:q.size()

编程实现

class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) { vector<vector<int>>v;
queue<TreeNode*>q;
q.push(root); //根节点入队
if(root == NULL)
return v ;
while(!q.empty()){ //队列不空
vector<int>vv;
queue<TreeNode*> next ; // 建立第二个队列 用来存放下一层的结点
while(!q.empty()){ //遍历当前层的结点 这层循环是核心 其他都是为了满足OJ输出 TreeNode* tre = q.front() ;
vv.push_back(tre->val); //访问该结点,为了满足输出要求,所以有点复杂,
q.pop(); //对头元素出队
if(tre->left!=NULL){ //它有左子树
next.push(tre->left);
}
if(tre->right!=NULL){ //它有右子树
next.push(tre->right);
}
}
v.push_back(vv);
q=next; // // 遍历完后进入下一层
}
return v;
}
};

编程总结

层次遍历往往要用到队列,要对队列的基本操作熟悉,注意二维向量的生成。


层次遍历 版本2

编程思想

给定一个二叉树,返回其节点值自底向上的层次遍历。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历)。

同版本一类似,只不过需要多一个栈,把每层返回的结点加入栈中,最后输出。

编程实现

class Solution {
public:
vector<vector<int>> levelOrderBottom(TreeNode* root) {
vector<vector<int>>v;
stack<vector<int>>s;
queue<TreeNode*>q;
q.push(root); //根节点入队
if(root == NULL)
return v ;
while(!q.empty()){ //队列不空
vector<int>vv;
queue<TreeNode*> next ; // 建立第二个队列 用来存放下一层的结点 while(!q.empty()){ //遍历每层的结点 这层循环是核心 其他都是为了满足OJ输出 TreeNode* tre = q.front() ;
vv.push_back(tre->val); //访问该结点,为了满足输出要求,所以有点复杂,
q.pop(); //对头元素出队
if(tre->left!=NULL){ //它有左子树
next.push(tre->left);
}
if(tre->right!=NULL){ //它有右子树
next.push(tre->right);
} }
s.push(vv); //将每层结点入栈
//v.push_back(vv);
q=next; // // 遍历完后进入下一层
}
while(!s.empty()){ //将每层结点倒序输出
v.push_back(s.top());
s.pop();
}
return v;
}
};

编程总结

注意其他数据结构的配合使用。

剑指offer 树的基本操作:四种遍历方式的更多相关文章

  1. 剑指Offer(二十四):二叉树中和为某一值的路径

    剑指Offer(二十四):二叉树中和为某一值的路径 搜索微信公众号:'AI-ming3526'或者'计算机视觉这件小事' 获取更多算法.机器学习干货 csdn:https://blog.csdn.ne ...

  2. 剑指Offer(三十四):第一个只出现一次的字符

    剑指Offer(三十四):第一个只出现一次的字符 搜索微信公众号:'AI-ming3526'或者'计算机视觉这件小事' 获取更多算法.机器学习干货 csdn:https://blog.csdn.net ...

  3. lua中for循环的四种遍历方式

    lua中for的四种遍历方式区别 table.maxn 取最大的整数key #table 从1开始的顺序整数最大值,如1,2,3,6 #table == 3   key,value pairs 取每一 ...

  4. list的四种遍历方式

    1.手先增强for循环和iterator遍历的效果是一样的,也就说 增强for循环的内部也就是调用iteratoer实现的,但是增强for循环 有些缺点,例如不能在增强循环里动态的删除集合内容.不能获 ...

  5. Map 的四种遍历方式

    Map 的四种遍历方式 import java.util.HashMap; import java.util.Iterator; import java.util.Map; public class ...

  6. java集合四种遍历方式

    package conection; import java.util.Iterator;import java.util.LinkedList;import java.util.List; publ ...

  7. map的四种遍历方式

    map是Java中非常常用的一种数据结构,但map不同于set和list都继承自Collection接口. 所以map没有实现Collection的Iterator 方法,自身没有迭代器来遍历元素. ...

  8. Map集合的四种遍历方式

    很久以前写的代码,和上一个做比较吧!便于以后查看 import java.util.HashMap; import java.util.Iterator; import java.util.Map; ...

  9. java list 的 四种遍历方式

    在java中遍历一个list对象的方法主要有以下四种: 1. For Loop —— 普通for循环 2. Advanced For Loop —— 高级for循环 3. Iterator Loop ...

随机推荐

  1. #2020征文-开发板#SYS_RUN()和MODULE_INIT()之间的那些事

    接触鸿蒙设备开发有一段时间了,也是时候好好挖一挖鸿蒙设备程序的启动流程了. 破冰问题:鸿蒙设备程序从哪里开始运行的? 相信大家都已经非常清楚了,鸿蒙设备程序需要指定入口函数,具体表现在代码层面就是通过 ...

  2. 部署基于.netcore5.0的ABP框架后台Api服务端,以及使用Nginx部署Vue+Element前端应用

    前面介绍了很多关于ABP框架的后台Web API 服务端,以及基于Vue+Element前端应用,本篇针对两者的联合部署,以及对部署中遇到的问题进行处理.ABP框架的后端是基于.net core5.0 ...

  3. AcWing&#160;127.&#160;任务

    题目链接 参考y神的思路QWQ 算法:贪心 对于每一个任务: \(y\) 的差异最多能使利润\(w\)浮动\(2 * 100 = 200\)元. \(x\) 差\(1\),则会使利润\(w\)浮动\( ...

  4. Filebeat+Logstash自定义多索引

    方案一:推荐 [root@elk-node-1 filebeat]# cat filebeat.yml|egrep -v "^$|^#|#" filebeat.inputs: - ...

  5. 一篇文章掌握Nginx核心文件结构

    1 Nginx核心配置结构 2 配置模块详解 设置worker进程的用户,指的linux中的用户,会涉及到nginx操作目录或文件的一些权限,默认为nobody user root; worker进程 ...

  6. uni-app全局属性和方法

    全局变量和全局方法是软件开发中常用的技术点! 实现方式大致分为: 1.vuex实现,值变动灵活 2.建立js文件,页面内引用 3.挂载vue实例后使用 4.小程序中的globalData 5.本地存储 ...

  7. Linux下查看目录文件大小

    1.ls -lht 查看当前目录下文件的大小 2.du -sh 查看当前文件夹的大小

  8. K8S安装Kubesphere

    准备工作 安装Helm curl -L https://git.io/get_helm.sh | bash 创建账户 cat > heml-rbac.yaml << EOF apiV ...

  9. 2020-2021-1 20209307《Linux内核原理与分析》第三周作业

    一.计算机的三大法宝 存储程序计算机.函数调用堆栈机制.中断机制 二.堆栈 堆栈的作用:记录函数调用框架.传递函数参数.保存返回值的地址.提供局部变量存储空间 堆栈操作:push栈顶地址减少四个字节. ...

  10. js上 十、循环语句-1:

    十.循环语句-1: 非常之重要. 作用:重复执行一段代码 ü while ü do...while ü for 它们的相同之处,都能够实现循环. 不同的地方,格式不一样,使用的场景略有不同. #10- ...