前言:

在go语言中 map 是很重要的数据结构。Map 是一种无序的键值对的集合。Map 最重要的一点是通过 key 来快速检索数据,key 类似于索引,指向数据的值。问题来了,这么安逸的 数据结构,它不是协程安全的 !当多个 协程同时对一个map 进行 读写时,会抛出致命错误。总结一下 想要 做到 协程安全 map 一共有以下三种方法。

1.map + 锁

这是最常见的一种操作,当要对 map操作的时候就加锁,其他的 协程就等待。下面是代码示例:

package util

import "sync"

type SafeMap struct {
Data map[string]interface{}
Lock sync.RWMutex
} func (this *SafeMap) Get(k string) interface{} {
this.Lock.RLock()
defer this.Lock.RUnlock()
if v, exit := this.Data[k]; exit {
return v
}
return nil
} func (this *SafeMap) Set(k string, v interface{}) {
this.Lock.Lock()
defer this.Lock.Unlock()
if this.Data == nil {
this.Data = make(map[string]interface{})
}
this.Data[k] = v
}

  

2. sync.map

这个是go 最近版本新推出来的 协程安全 map == 可能是官方也觉得 蛮有必要的吧 。下面的代码 主要写一下使用方法。具体原理我就不介绍了。这里要注意一下 sync.map 不需要 初始化

var test sync.Map

//设置元素
func set (k,v interface{}){
test.Store(k,v)
} //获得元素
func get (k interface{}) interface{}{
tem ,exit := test.Load(k)
if exit {
return tem
}
return nil
} //传入一个 函数 ,sync.map 会内部迭代 ,运行这个函数
func ranggfunc (funcs func(key, value interface{}) bool) {
test.Range(funcs)
} //删除元素
func del(key interface{}){
test.Delete(key)
}

3.单协程操作 map ,用 channle 通信

这个思路有点 骚,就是一直由一个协程 操作map ,其他协程 通过 channle 告诉这个协程应该 怎么操作。其实这样子 性能不是很好,因为 channle 底层 也是锁 ,而且 map 存数据 是要 计算hash的 ,之前是 多个协程自己算自己的hash ,现在变成了一个协程计算了。但是这个思路还是可以,不仅仅是 在 map上可以这么操作。socket 通信啊, 全局 唯一对象的调用啊,都可以用此思路。下面给大家看一下我是实现的代码:

package main

import (
"fmt"
//"time"
) var (
ADD interface{} = 1
DEL interface{} = 2
GET interface{} = 3
) type safeMap struct {
Msq chan *[3] interface{} //['type','id','value',channle]
data map[interface{}]interface{}
chanl chan interface{}
} func NewSafeMap() *safeMap {
tem := &safeMap{}
tem.init()
return tem
} func (this *safeMap) init() {
this.Msq = make(chan *[3]interface{},10)
this.data = make(map[interface{}]interface{})
this.chanl = make(chan interface{},0)
go this.run()
} func (this *safeMap) run() {
for {
select {
case msg := <- this.Msq :
switch msg[0] {
case ADD :
this.dataAdd(msg[1],msg[2])
case DEL :
this.dataDel(msg[1])
case GET :
this.dataGet(msg[1])
}
}
}
} func (this *safeMap) msqChan (typ,id,val interface{}) *[3]interface{}{
return &[...]interface{}{typ,id,val}
} //保存 或者更新元素
func (this *safeMap) dataAdd (id , value interface{}) {
this.data[id] = value
} //删除元素
func (this *safeMap) dataDel (id interface{}) {
delete(this.data,id)
} //获得元素
func (this *safeMap) dataGet (id interface{}) {
if val ,exit := this.data[id] ;exit {
this.chanl <- val
return
}
this.chanl <- nil
} //----------------------------------------------------对外接口--------------------------------
func (this *safeMap) Add (id ,value interface{}) {
this.Msq <- this.msqChan(ADD,id,value)
} func (this *safeMap) Del (id interface{}) {
this.Msq <- this.msqChan(DEL,id ,nil)
} func (this *safeMap) Get (id interface{}) interface{} {
this.Msq <- this.msqChan(GET,id,nil)
res := <- this.chanl
return res
} //获得 长度
func (this *safeMap) GetLength() uint32{
return uint32(len(this.data))
} func main() {
sa := NewSafeMap() // sa.Add(1,1)
sa.Add(2,3)
fmt.Println(2,sa.Get(2))
sa.Del(2)
fmt.Println(2,sa.Get(2))
}

  

go语言协程安全map的更多相关文章

  1. Go语言协程

    协程的特点 1.该任务的业务代码主动要求切换,即主动让出执行权限 2.发生了IO,导致执行阻塞(使用channel让协程阻塞) 与线程本质的不同 C#.java中我们执行多个线程,是通过时间片切换来进 ...

  2. 一个“蝇量级” C 语言协程库

    协程(coroutine)顾名思义就是“协作的例程”(co-operative routines).跟具有操作系统概念的线程不一样,协程是在用户空间利用程序语言的语法语义就能实现逻辑上类似多任务的编程 ...

  3. Go语言协程并发---条件变量

    package main import ( "fmt" "sync" "time" ) func main() { //要监听的变量 bit ...

  4. Go语言协程并发---读写锁sync.RWMutex

    package main import ( "fmt" "sync" "time" ) /* 读写锁 多路只读 一路只写 读写互斥 */ / ...

  5. Go语言协程并发---互斥锁sync.Mutex

    package main import ( "fmt" "sync" "time" ) /* mt.Lock() 抢锁 一次只能被一个协程锁 ...

  6. Go语言协程并发---等待组sync.WaitGroup

    package main import ( "fmt" "sync" "time" ) /*等待组API介绍*/ func main071( ...

  7. Go语言协程并发---管道信号量应用

    package main import ( "fmt" "math" "strconv" "time" ) /* ·10 ...

  8. Go语言协程并发---生产者消费者实例

    package main import ( "fmt" "strconv" "time" ) /* 改进生产者消费者模型 ·生产者每秒生产一 ...

  9. Go语言协程并发---原子操作

    package main import ( "fmt" "sync/atomic" ) /* 用原子来替换锁,其主要原因是: 原子操作由底层硬件支持,而锁则由操 ...

随机推荐

  1. 多测师讲解自动化selenium___定位元素002___高级讲师肖sir

    高级自动化测试python+selenium教程手册 --高级讲师肖sir(Harm) 第 2 章8种定位方法 总结: selenium 的 webdriver 提供了八种基本的元素定位方法,前面六种 ...

  2. 使用Python对植物大战僵尸学习研究

    根据上一篇 使用Python读写游戏1 中,使用Python win32库,对一款游戏进行了读内存 操作. 今天来写一下对内存进行写的操作 正文 要进行32位的读写,首先了解一下要用到的几个函数,通过 ...

  3. k8s集群调度方案

    Scheduler是k8s集群的调度器,主要的任务是把定义好的pod分配到集群节点上 有以下特征: 1  公平   保证每一个节点都能被合理分配资源或者能被分配资源 2  资源高效利用   集群所有资 ...

  4. MeteoInfoLab脚本示例:加载地图图层

    应用最广泛的的地图数据应该是shape格式,网络上有很多免费下载资源.MeteoInfoLab中读取shape文件的函数是shaperead,参数即文件名,返回数据包含图形和属性信息的图层对象.矢量图 ...

  5. python接口测试之日志功能

    之前在简书中看了一篇关于日志功能的文档,供大家参考:https://www.jianshu.com/p/62f7b49b41e7 Python通过logging模块提供日志功能,所以直接导入即可 im ...

  6. 【转载】动态规划—各种 DP 优化

    原博客地址 关于氵博客:其实主要是防止我找不到这篇文了

  7. c++ 通用单例类声明

    //单例类定义#define CLASS_INSTANCE_DEF(className) \public: \ static className* GetInstance() \ { \ static ...

  8. Centos定时备份 MySQL数据库

    一.编写数据库备份脚本 backupmysql.sh #!/bin/bash # Name:bakmysql.sh # This is a ShellScript For Auto DB Backup ...

  9. 观察者模式EventBus

    EventBus能够简化各组件间的通信,让我们的代码书写变得简单,能有效的分离事件发送方和接收方(也就是解耦的意思),能避免复杂和容易出错的依赖性和生命周期问题. implementation 'or ...

  10. Go之NSQ简介,原理和使用

    NSQ简介 NSQ是Go语言编写的一个开源的实时分布式内存消息队列,其性能十分优异. NSQ 是实时的分布式消息处理平台,其设计的目的是用来大规模地处理每天数以十亿计级别的消息.它具有分布式和去中心化 ...