Spark JDBC方式连接MySQL数据库
Spark JDBC方式连接MySQL数据库
- 一、JDBC connection properties(属性名称和含义)
- 二、spark jdbc read MySQL
- 三、jdbc(url: String, table: String, properties: Properties): DataFrame
- 四、jdbc(url: String, table: String, columnName: String, lowerBound: Long, upperBound: Long, numPartitions: Int, connectionProperties: Properties): DataFrame
- 四、jdbc(url: String, table: String, predicates: Array[String], connectionProperties: Properties): DataFrame predicates: Condition in the WHERE clause for each partition.
- 五、spark jdbc write MySQL
一、JDBC connection properties(属性名称和含义)
url:要连接的JDBC URL。列如:jdbc:mysql://ip:3306
dbtable:应该读取的JDBC表。可以使用括号中的子查询代替完整表。
driver:用于连接到此URL的JDBC驱动程序的类名,列如:com.mysql.jdbc.Driver
partitionColumn, lowerBound, upperBound, numPartitions:
这些options仅适用于read数据。这些options必须同时被指定。他们描述,如何从多个workers并行读取数据时,分割表。
partitionColumn:必须是表中的数字列。
lowerBound和upperBound仅用于决定分区的大小,而不是用于过滤表中的行。
表中的所有行将被分割并返回。
fetchsize:仅适用于read数据。JDBC提取大小,用于确定每次获取的行数。这可以帮助JDBC驱动程序调优性能,这些驱动程序默认具有较低的提取大小(例如,Oracle每次提取10行)。
batchsize:仅适用于write数据。JDBC批量大小,用于确定每次insert的行数。
这可以帮助JDBC驱动程序调优性能。默认为1000。
isolationLevel:仅适用于write数据。事务隔离级别,适用于当前连接。它可以是一个NONE,READ_COMMITTED,READ_UNCOMMITTED,REPEATABLE_READ,或SERIALIZABLE,对应于由JDBC的连接对象定义,缺省值为标准事务隔离级别READ_UNCOMMITTED。请参阅文档java.sql.Connection。
truncate:仅适用于write数据。当SaveMode.Overwrite启用时,此选项会truncate在MySQL中的表,而不是删除,再重建其现有的表。这可以更有效,并且防止表元数据(例如,索引)被去除。但是,在某些情况下,例如当新数据具有不同的模式时,它将无法工作。它默认为false。
createTableOptions:仅适用于write数据。此选项允许在创建表(例如CREATE TABLE t (name string) ENGINE=InnoDB.)时设置特定的数据库表和分区选项。
二、spark jdbc read MySQL
val jdbcDF11 = spark.read.format("jdbc")
.option("driver", "com.mysql.jdbc.Driver")
.option("url", "jdbc:mysql://ip:3306")
.option("dbtable", "db.user_test")
.option("user", "test")
.option("password", "123456")
.option("fetchsize", "3")
.load()
jdbcDF11.show
val jdbcDF12 = spark.read.format("jdbc").options(
Map(
"driver" -> "com.mysql.jdbc.Driver",
"url" -> "jdbc:mysql://ip:3306",
"dbtable" -> "db.user_test",
"user" -> "test",
"password" -> "123456",
"fetchsize" -> "3")).load()
jdbcDF12.show
三、jdbc(url: String, table: String, properties: Properties): DataFrame
import java.util.Properties
// jdbc(url: String, table: String, properties: Properties): DataFrame
val readConnProperties1 = new Properties()
readConnProperties1.put("driver", "com.mysql.jdbc.Driver")
readConnProperties1.put("user", "test")
readConnProperties1.put("password", "123456")
readConnProperties1.put("fetchsize", "3")
val jdbcDF1 = spark.read.jdbc(
"jdbc:mysql://ip:3306",
"db.user_test",
readConnProperties1)
jdbcDF1.show
+---+------+---+
|uid|gender|age|
+---+------+---+
| 2| 2| 20|
| 3| 1| 30|
| 4| 2| 40|
| 5| 1| 50|
| 6| 2| 60|
| 7| 1| 25|
| 8| 2| 35|
| 9| 1| 70|
| 10| 2| 80|
| 1| 1| 18|
+---+------+---+
//默认并行度为1
jdbcDF1.rdd.partitions.size
Int = 1
//-------------------------
// jdbc(url: String, table: String, properties: Properties): DataFrame
val readConnProperties4 = new Properties()
readConnProperties4.put("driver", "com.mysql.jdbc.Driver")
readConnProperties4.put("user", "test")
readConnProperties4.put("password", "123456")
readConnProperties4.put("fetchsize", "3")
val jdbcDF4 = spark.read.jdbc(
"jdbc:mysql://ip:3306",
"(select * from db.user_test where gender=1) t", // 注意括号和表别名,必须得有,这里可以过滤数据
readConnProperties4)
jdbcDF4.show
+---+------+---+
|uid|gender|age|
+---+------+---+
| 3| 1| 30|
| 5| 1| 50|
| 7| 1| 25|
| 9| 1| 70|
| 1| 1| 18|
+---+------+---+
四、jdbc(url: String, table: String, columnName: String, lowerBound: Long, upperBound: Long, numPartitions: Int, connectionProperties: Properties): DataFrame
import java.util.Properties
val readConnProperties2 = new Properties()
readConnProperties2.put("driver", "com.mysql.jdbc.Driver")
readConnProperties2.put("user", "test")
readConnProperties2.put("password", "123456")
readConnProperties2.put("fetchsize", "2")
val columnName = "uid"
val lowerBound = 1
val upperBound = 6
val numPartitions = 3
val jdbcDF2 = spark.read.jdbc(
"jdbc:mysql://ip:3306",
"db.user_test",
columnName,
lowerBound,
upperBound,
numPartitions,
readConnProperties2)
jdbcDF2.show
+---+------+---+
|uid|gender|age|
+---+------+---+
| 2| 2| 20|
| 1| 1| 18|
| 3| 1| 30|
| 4| 2| 40|
| 5| 1| 50|
| 6| 2| 60|
| 7| 1| 25|
| 8| 2| 35|
| 9| 1| 70|
| 10| 2| 80|
+---+------+---+
// 并行度为3,对应于numPartitions
jdbcDF2.rdd.partitions.size
Int = 3
四、jdbc(url: String, table: String, predicates: Array[String], connectionProperties: Properties): DataFrame predicates: Condition in the WHERE clause for each partition.
import java.util.Properties
val readConnProperties3 = new Properties()
readConnProperties3.put("driver", "com.mysql.jdbc.Driver")
readConnProperties3.put("user", "test")
readConnProperties3.put("password", "123456")
readConnProperties3.put("fetchsize", "2")
val arr = Array(
(1, 50),
(2, 60))
// 此处的条件,既可以分割数据用作并行度,也可以过滤数据
val predicates = arr.map {
case (gender, age) =>
s" gender = $gender " + s" AND age < $age "
}
val predicates1 =
Array(
"2017-05-01" -> "2017-05-20",
"2017-06-01" -> "2017-06-05").map {
case (start, end) =>
s"cast(create_time as date) >= date '$start' " + s"AND cast(create_time as date) <= date '$end'"
}
val jdbcDF3 = spark.read.jdbc(
"jdbc:mysql://ip:3306",
"db.user_test",
predicates,
readConnProperties3)
jdbcDF3.show
+---+------+---+
|uid|gender|age|
+---+------+---+
| 3| 1| 30|
| 7| 1| 25|
| 1| 1| 18|
| 2| 2| 20|
| 4| 2| 40|
| 8| 2| 35|
+---+------+---+
// 并行度为2,对应arr数组中元素的个数
jdbcDF3.rdd.partitions.size
Int = 2
五、spark jdbc write MySQL
import spark.implicits._
val dataList: List[(Double, String, Double, Double, String, Double, Double, Double, Double)] = List(
(0, "male", 37, 10, "no", 3, 18, 7, 4),
(0, "female", 27, 4, "no", 4, 14, 6, 4),
(0, "female", 32, 15, "yes", 1, 12, 1, 4),
(0, "male", 57, 15, "yes", 5, 18, 6, 5),
(0, "male", 22, 0.75, "no", 2, 17, 6, 3),
(0, "female", 32, 1.5, "no", 2, 17, 5, 5),
(0, "female", 22, 0.75, "no", 2, 12, 1, 3),
(0, "male", 57, 15, "yes", 2, 14, 4, 4),
(0, "female", 32, 15, "yes", 4, 16, 1, 2))
val colArray: Array[String] = Array("affairs", "gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating")
val df = dataList.toDF(colArray: _*)
df.write.mode("overwrite").format("jdbc").options(
Map(
"driver" -> "com.mysql.jdbc.Driver",
"url" -> "jdbc:mysql://ip:3306",
"dbtable" -> "db.affairs",
"user" -> "test",
"password" -> "123456",
"batchsize" -> "1000",
"truncate" -> "true")).save()
Spark JDBC方式连接MySQL数据库的更多相关文章
- jmeter中通过jdbc方式连接mysql数据库的配置参考
jmeter中通过jdbc方式连接mysql数据库的配置参考: Database URL=jdbc:mysql://ip:port/dbname?useUnicode=true&allowMu ...
- Ubuntu jsp平台使用JDBC来连接MySQL数据库
Ubuntu 7.04 搭建Ubuntu jsp平台开发环境MySQL+tomcat+apache+j2sdk1.6在所有安装开始前先在Terminal中输入 rpm -q -a查看是否安装过rpm ...
- JDBC Java 连接 MySQL 数据库
MySQL 版本:Server version: 5.7.17-log MySQL Community Server (GPL) 用于测试的 MySQL 数据库:game 查看数据库中的表 mysql ...
- C++ API方式连接mysql数据库实现增删改查
这里复制的 http://www.bitscn.com/pdb/mysql/201407/226252.html 一.环境配置 1,装好mysql,新建一个C++控制台工程(从最简单的弄起,这个会了, ...
- 2.PHP利用PDO连接方式连接mysql数据库
代码如下 <?php$serverName = "这里填IP地址";$dbName = "这里填数据库名";$userName = "这里填用户 ...
- JAVA高级编程序——JDBC(连接mysql数据库)——(一)
java要想连接数据库,就要用JDBC(java database connection),用这个jar包 (mysql-connector-java-xxx-xx-bin.jar) sun公司为我们 ...
- JDBC中连接MySQL数据库
package qddx.JDBC; import java.sql.*; public class JDBC_Connection { static String driverName = &quo ...
- Spring Boot使用JDBC方式连接MySQL
首先去spring官网下载一个名为test的Spring Boot项目模板:https://start.spring.io/ 然后在mysql中的testdb数据库中新建一张名为test_user的表 ...
- Oracle 12c JDBC方式连接PDB数据库
1.配置监听 这里假定CDB数据库名为ORCL,PDB在CDB下面名称为PDBORCLlistener.ora添加(#后面为注释,不要添加进去) SID_LIST_LISTENER = (SID_LI ...
随机推荐
- ThreadLocal解决什么问题
原创文章,转载请务必将下面这段话置于文章开头处(保留超链接).本文转发自技术世界,原文链接 http://www.jasongj.com/java/threadlocal/ ThreadLocal解决 ...
- Spring中ApplicationContextAware接口的说明
转载 https://www.cnblogs.com/muqingzhi123/p/9805623.html 1.为什么使用AppplicationContextAware? ApplicationC ...
- spark的 structStreaming 一些介绍
转发 https://www.toutiao.com/a6696339998905467403/?tt_from=mobile_qq&utm_campaign=client_share& ...
- c3p0连接池使用:使用c3p0数据源步骤以及完成jdbcUtills类
1.使用c3p0数据源步骤): a.下载c3p0jar,官网下载:https://sourceforge.net/projects/c3p0/: b.导入jar包时,应该导入下面两个包: c.编写c3 ...
- jQuery中toggle与slideToggle以及fadeToggle的显示、隐藏方法的比较
1.区别 ①动画效果的比较: toggle:直接显示.隐藏,如果有[时间参数]且[匹配的元素有宽度属性],则动态效果为左上角-右下角拉卷效果,透明度0-1之间的变化:若有时间参数但是[匹配的元素没有宽 ...
- 在微信小程序开发中使用Typescript
Typescript的优势咱不需要赘述太多,有兴趣可以参考(https://www.typescriptlang.org/).今天给大家分享一下如何在微信小程序(或者其他同类小程序)开发中使用Type ...
- OpenTelemetry - 云原生下可观测性的新标准
CNCF 简介 CNCF(Cloud Native Computing Foundation),中文为"云原生计算基金会",CNCF是Linux基金会旗下的基金会,可以理解为一个非 ...
- (二)数据源处理6-excel数据转换实战(下)
将结果的所有数据整理如下: {'api_case_01': [{'测试用例编号': 'api_case_01', '测试用例名称': '获取access_token接口测试', '用例执行': '是' ...
- 【Oracle LISTNER】oracle Listener 宕机解决办法
今天想起了很久没用的oracle库,用plsql尝试连接,发现报超时错误,以为是偶然,多次尝试连接,发现还是超时,于是登录到系统中,查看数据库情况,发现正常查询和修改添加,感觉不是数据库问题,查看监听 ...
- 超精讲-逐例分析CS:LAB2-Bomb!(上)
0. 环境要求 关于环境已经在lab1里配置过了这里要记得安装gdb 安装命令 sudo yum install gdb 实验的下载地址 http://csapp.cs.cmu.edu/3e/labs ...