Picnic Planning

Time Limit: 5000MS   Memory Limit: 10000K
Total Submissions: 10742   Accepted: 3885

Description

The Contortion Brothers are a famous set of circus clowns, known worldwide for their incredible ability to cram an unlimited number of themselves into even the smallest vehicle. During the off-season, the brothers like to get together for an Annual Contortionists Meeting at a local park. However, the brothers are not only tight with regard to cramped quarters, but with money as well, so they try to find the way to get everyone to the party which minimizes the number of miles put on everyone's cars (thus saving gas, wear and tear, etc.). To this end they are willing to cram themselves into as few cars as necessary to minimize the total number of miles put on all their cars together. This often results in many brothers driving to one brother's house, leaving all but one car there and piling into the remaining one. There is a constraint at the park, however: the parking lot at the picnic site can only hold a limited number of cars, so that must be factored into the overall miserly calculation. Also, due to an entrance fee to the park, once any brother's car arrives at the park it is there to stay; he will not drop off his passengers and then leave to pick up other brothers. Now for your average circus clan, solving this problem is a challenge, so it is left to you to write a program to solve their milage minimization problem.

Input

Input will consist of one problem instance. The first line will contain a single integer n indicating the number of highway connections between brothers or between brothers and the park. The next n lines will contain one connection per line, of the form name1 name2 dist, where name1 and name2 are either the names of two brothers or the word Park and a brother's name (in either order), and dist is the integer distance between them. These roads will all be 2-way roads, and dist will always be positive.The maximum number of brothers will be 20 and the maximumlength of any name will be 10 characters.Following these n lines will be one final line containing an integer s which specifies the number of cars which can fit in the parking lot of the picnic site. You may assume that there is a path from every brother's house to the park and that a solution exists for each problem instance.

Output

Output should consist of one line of the form 
Total miles driven: xxx 
where xxx is the total number of miles driven by all the brothers' cars.

Sample Input

10
Alphonzo Bernardo 32
Alphonzo Park 57
Alphonzo Eduardo 43
Bernardo Park 19
Bernardo Clemenzi 82
Clemenzi Park 65
Clemenzi Herb 90
Clemenzi Eduardo 109
Park Herb 24
Herb Eduardo 79
3

Sample Output

Total miles driven: 183

题意:

要求做一个最小生成树,限制条件:给定其中一个点限制其的度不超过 k (最小 k 度限制生成树)。

思路:

第一步,设被限制度数的节点为 v0 ,则在去除 v0 的情况下做最小生成树,可能得到若干个最小生成树(设有 m 棵树);容易想到,这写树必须通过 v0 来连接成一颗树。

第二步,从 v0 引出 m 条边分别连向 m 棵树,则此时得到一个最小 m 度限制生成树,若给定的 k 小于 m 则说明这不是连通图,无法做生成树。

第三步,最多找出 k-m 条 v0 的边去替换树上现有的边;当然,替换必须使树变小才合法。这一步是比较麻烦的,并且若直接枚举的话时间复杂度也较高。每次使用动态规划找出一条贡献最大的边,并替换进树中。直到找齐 k-m 条边、或无法找到合法边是停止。此时得到的就是最小 k 度限制生成树了。

总结:

思路如上十分清晰,可实现起来细节太多了,比较坑的是同一道题不能在不同的OJ AC。在多次调试之后我的代码总算征服了poj、uva、uvalive、scu,但 fzu 却迟迟不能AC。在纵观其他大佬的题解后,发现我的代码已经算强的了....

此题需要注意的是:输入是两点之间可能存在多条边,需要保留最小的边。

代码:

#include<iostream>
#include<map>
#include<cstring>
#include<vector>
#include<queue>
#include<algorithm>
#include<cstdio>
#define READFILE freopen("D:\\in.txt","r",stdin);
#define INF 1e9+7
using namespace std; class Edge
{
public:
int u, v, w;
Edge(int a=0, int b=0, int c=0):u(a), v(b), w(c) {}
}; map<string, int> mp;
vector<Edge> edges;
Edge dp[105];
int m, n, k, md, grap[105][105], fa[105], mst[105][105], ans=0; bool cmp(Edge a, Edge b)
{
return a.w<b.w;
} void Init()
{
memset(grap, -1, sizeof(grap));//-1不可达
memset(mst, 0, sizeof(mst));
mp.clear();
edges.clear();
n=1, md=0, ans=0, k=0;
int u, v, w;
mp["Park"]=1; string name1, name2;
cin>>m;
for(int i=0; i<m; ++i)
{
cin>>name1>>name2>>w;
if(mp.find(name1)==mp.end())
mp[name1]=n++;
if(mp.find(name2)==mp.end())
mp[name2]=n++;
u=mp[name1], v=mp[name2];
edges.push_back(Edge(u, v, w));
if(grap[u][v]==-1)
grap[u][v]=grap[v][u]=w;
else
grap[u][v]=grap[v][u]=min(grap[u][v], w);
}
cin>>k;
} int Find(int x)
{
if(fa[x]!=x)
return fa[x]=Find(fa[x]);
return x;
} void Union(int a, int b)
{
int x=Find(a);
int y=Find(b);
if(x!=y)
fa[x]=y;
} int Kruskal()//去除限制点生成md棵最小生成树
{
int res=0;
sort(edges.begin(), edges.end(), cmp);
for(int i=0; i<=n; ++i)
fa[i]=i;
for(int i=0; i<edges.size(); ++i)
{
Edge& e=edges[i];
if(e.u==1 || e.v==1 || Find(e.u)==Find(e.v)) continue;
Union(e.u, e.v);
mst[e.u][e.v]=mst[e.v][e.u]=grap[e.u][e.v];
res+=grap[e.u][e.v];
}
return res;
} int mmst()//生成最小md度限制生成树
{
int minw[25], minv[25], res=0;
for(int i=0; i<=n; ++i) minw[i]=INF;
for(int i=2; i<=n; ++i)
if(grap[1][i]!=-1)
{
int x=Find(i);
if(minw[x] > grap[1][i])
{
minw[x]=grap[1][i];
minv[x]=i;
}
}
for(int i=1; i<=n; ++i)
if(minw[i]!=INF)
{
md++;
mst[1][minv[i]]=mst[minv[i]][1]=1;
res+=grap[1][minv[i]];
}
return res;
} void dfs(int x,int fa)
{
for(int i=2; i<=n; i++)
if(mst[x][i] && i!=fa)
{
if(dp[i].w==-1)
{
if(grap[x][i]<dp[x].w)
{
dp[i].u=dp[x].u;
dp[i].v=dp[x].v;
dp[i].w=dp[x].w;
}
else
dp[i].u=x,dp[i].v=i,dp[i].w=grap[x][i];
}
dfs(i,x);
}
}
int mkst()
{
int res=0;
for(int i=md+1; i<=k; i++)
{
for(int j=0; j<=n; ++j)
dp[j].w=-1;
dp[1].w=-INF;
for(int j=2; j<=n; j++)
if(mst[1][j])
dp[j].w=-INF;
dfs(1,-1);
int t=0,minn=INF;
for(int j=2; j<=n; j++)
if(grap[1][j]!=-1&&grap[1][j]-dp[j].w<minn)
{
minn=grap[1][j]-dp[j].w;
t=j;
}
if(minn>=0)
break;
mst[1][t]=mst[t][1]=1;
int x=dp[t].u,y=dp[t].v;
mst[x][y]=mst[y][x]=0;
res+=minn;
}
return res;
} int main()
{
//READFILE
int t;
t=1;//有的oj多组数据此处改为cin>>t即可
while(t--)
{
Init();
int ans1=Kruskal();
int ans2=mmst();
int ans3=mkst();
ans=ans1+ans2+ans3;
cout<<"Total miles driven: "<<ans<<endl;
if(t)cout<<endl;
}
return 0;
}

poj1639,uva1537,uvalive2099,scu1622,fzu1761 Picnic Planning (最小限制生成树)的更多相关文章

  1. POJ 1639 Picnic Planning 最小k度生成树

    Picnic Planning Time Limit: 5000MS   Memory Limit: 10000K Total Submissions:11615   Accepted: 4172 D ...

  2. poj1639 Picnic Planning 最小度数限制生成树

    题意:若干个人开车要去park聚会,可是park能停的车是有限的,为k.所以这些人要通过先开车到其它人家中,停车,然后拼车去聚会.另外,车的容量是无限的,他们家停车位也是无限的. 求开车总行程最短. ...

  3. POJ1639 - Picnic Planning

    原题链接 Description 给出一张个点的无向边权图并钦定点,求使得点的度不超过的最小生成树. Solution 首先无视掉与相连的所有边,原图会变成若干互不连通的个块.对每个块分别求MST,再 ...

  4. POJ 1861 ——Network——————【最小瓶颈生成树】

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 15268   Accepted: 5987   Specia ...

  5. bzoj2395[Balkan 2011]Timeismoney最小乘积生成树

    所谓最小乘积生成树,即对于一个无向连通图的每一条边均有两个权值xi,yi,在图中找一颗生成树,使得Σxi*Σyi取最小值. 直接处理问题较为棘手,但每条边的权值可以描述为一个二元组(xi,yi),这也 ...

  6. HDU5697 刷题计划 dp+最小乘积生成树

    分析:就是不断递归寻找靠近边界的最优解 学习博客(必须先看这个): 1:http://www.cnblogs.com/autsky-jadek/p/3959446.html 2:http://blog ...

  7. 【UVA 11354】 Bond (最小瓶颈生成树、树上倍增)

    [题意] n个点m条边的图 q次询问 找到一条从s到t的一条边 使所有边的最大危险系数最小 InputThere will be at most 5 cases in the input file.T ...

  8. 算法提高 最小方差生成树(Kruskal)_模板

     算法提高 最小方差生成树   时间限制:1.0s   内存限制:256.0MB        问题描述 给定带权无向图,求出一颗方差最小的生成树. 输入格式 输入多组测试数据.第一行为N,M,依次是 ...

  9. 【BZOJ2395】【Balkan 2011】Timeismoney 最小乘积生成树

    链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...

随机推荐

  1. zepto | 用事件委托去解决无法给新增添的DOM添加事件的问题

    前段时间在做一个任务的时候,碰见了一个问题:zepto无法用on事件去监听新增加的dom事件.这个问题用live可解决, 但是live在ios下失效,为了解决这个问题,我采用了暴力的方法去解决,每次添 ...

  2. Kubernetes调度流程与安全(七)

    一.Kubernetes中的调度流程 1,介绍 Scheduler 是 k8s 中的调度器,主要的任务是把定义的 Pod 分配到集群的节点上.Scheduler 是作为一个单独的程序运行的,启动之后会 ...

  3. 3.GoolgeProtoBuffer序列化反序列化

  4. 刷题[安洵杯 2019]easy_web

    前置知识 md5碰撞: %4d%c9%68%ff%0e%e3%5c%20%95%72%d4%77%7b%72%15%87%d3%6f%a7%b2%1b%dc%56%b7%4a%3d%c0%78%3e% ...

  5. zabbix_server.conf配置文件参数

    NodeID: 在amster-child 的分布式架构中,这个ID是唯一标识zabbix node的号码 ListenPort:Trapper 类型Item监听的端口, SourceIP: 在连接其 ...

  6. Python-IndexError: list index out of range

    Error:IndexError: list index out of range Where? 对Python中有序序列进行按索引取值的时候,出现这个异常 Why? 对于有序序列: 字符串 str ...

  7. Python练习题 032:Project Euler 004:最大的回文积

    本题来自 Project Euler 第4题:https://projecteuler.net/problem=4 # Project Euler: Problem 4: Largest palind ...

  8. 手把手撸套框架-Victory框架1.0 详解

    目录 其实Victory框架1.0 在8月份就完成了,整个9月份都没有更新博客,主要还是因为松懈了. 所以,趁着国庆节的放假的时间把博客给更新一下,1.0总的来说算不得一个成熟的产品,但是拿来开发我们 ...

  9. P2590 树的统计

    一道树剖的模板题 首先,由于本人比较懒,就把单点修改写成了区间修改,其实也没有有多大区别(关键是我不会写单点修改QAQ) 不得不说,树剖的码量比较大,调了一上午才勉强调完. 这道题要求我们支持 单点修 ...

  10. 实验六 DIV+CSS的综合应用

    实验六 DIV+CSS的综合应用 [实验目的] 1.掌握DIV布局的方法: 2.利用CSS对DIV进行美化: 3.利用CSS对文本图像等网页元素进行美化 [实验环境] 连接互联网的PC ,Win7操作 ...