Picnic Planning

Time Limit: 5000MS   Memory Limit: 10000K
Total Submissions: 10742   Accepted: 3885

Description

The Contortion Brothers are a famous set of circus clowns, known worldwide for their incredible ability to cram an unlimited number of themselves into even the smallest vehicle. During the off-season, the brothers like to get together for an Annual Contortionists Meeting at a local park. However, the brothers are not only tight with regard to cramped quarters, but with money as well, so they try to find the way to get everyone to the party which minimizes the number of miles put on everyone's cars (thus saving gas, wear and tear, etc.). To this end they are willing to cram themselves into as few cars as necessary to minimize the total number of miles put on all their cars together. This often results in many brothers driving to one brother's house, leaving all but one car there and piling into the remaining one. There is a constraint at the park, however: the parking lot at the picnic site can only hold a limited number of cars, so that must be factored into the overall miserly calculation. Also, due to an entrance fee to the park, once any brother's car arrives at the park it is there to stay; he will not drop off his passengers and then leave to pick up other brothers. Now for your average circus clan, solving this problem is a challenge, so it is left to you to write a program to solve their milage minimization problem.

Input

Input will consist of one problem instance. The first line will contain a single integer n indicating the number of highway connections between brothers or between brothers and the park. The next n lines will contain one connection per line, of the form name1 name2 dist, where name1 and name2 are either the names of two brothers or the word Park and a brother's name (in either order), and dist is the integer distance between them. These roads will all be 2-way roads, and dist will always be positive.The maximum number of brothers will be 20 and the maximumlength of any name will be 10 characters.Following these n lines will be one final line containing an integer s which specifies the number of cars which can fit in the parking lot of the picnic site. You may assume that there is a path from every brother's house to the park and that a solution exists for each problem instance.

Output

Output should consist of one line of the form 
Total miles driven: xxx 
where xxx is the total number of miles driven by all the brothers' cars.

Sample Input

10
Alphonzo Bernardo 32
Alphonzo Park 57
Alphonzo Eduardo 43
Bernardo Park 19
Bernardo Clemenzi 82
Clemenzi Park 65
Clemenzi Herb 90
Clemenzi Eduardo 109
Park Herb 24
Herb Eduardo 79
3

Sample Output

Total miles driven: 183

题意:

要求做一个最小生成树,限制条件:给定其中一个点限制其的度不超过 k (最小 k 度限制生成树)。

思路:

第一步,设被限制度数的节点为 v0 ,则在去除 v0 的情况下做最小生成树,可能得到若干个最小生成树(设有 m 棵树);容易想到,这写树必须通过 v0 来连接成一颗树。

第二步,从 v0 引出 m 条边分别连向 m 棵树,则此时得到一个最小 m 度限制生成树,若给定的 k 小于 m 则说明这不是连通图,无法做生成树。

第三步,最多找出 k-m 条 v0 的边去替换树上现有的边;当然,替换必须使树变小才合法。这一步是比较麻烦的,并且若直接枚举的话时间复杂度也较高。每次使用动态规划找出一条贡献最大的边,并替换进树中。直到找齐 k-m 条边、或无法找到合法边是停止。此时得到的就是最小 k 度限制生成树了。

总结:

思路如上十分清晰,可实现起来细节太多了,比较坑的是同一道题不能在不同的OJ AC。在多次调试之后我的代码总算征服了poj、uva、uvalive、scu,但 fzu 却迟迟不能AC。在纵观其他大佬的题解后,发现我的代码已经算强的了....

此题需要注意的是:输入是两点之间可能存在多条边,需要保留最小的边。

代码:

#include<iostream>
#include<map>
#include<cstring>
#include<vector>
#include<queue>
#include<algorithm>
#include<cstdio>
#define READFILE freopen("D:\\in.txt","r",stdin);
#define INF 1e9+7
using namespace std; class Edge
{
public:
int u, v, w;
Edge(int a=0, int b=0, int c=0):u(a), v(b), w(c) {}
}; map<string, int> mp;
vector<Edge> edges;
Edge dp[105];
int m, n, k, md, grap[105][105], fa[105], mst[105][105], ans=0; bool cmp(Edge a, Edge b)
{
return a.w<b.w;
} void Init()
{
memset(grap, -1, sizeof(grap));//-1不可达
memset(mst, 0, sizeof(mst));
mp.clear();
edges.clear();
n=1, md=0, ans=0, k=0;
int u, v, w;
mp["Park"]=1; string name1, name2;
cin>>m;
for(int i=0; i<m; ++i)
{
cin>>name1>>name2>>w;
if(mp.find(name1)==mp.end())
mp[name1]=n++;
if(mp.find(name2)==mp.end())
mp[name2]=n++;
u=mp[name1], v=mp[name2];
edges.push_back(Edge(u, v, w));
if(grap[u][v]==-1)
grap[u][v]=grap[v][u]=w;
else
grap[u][v]=grap[v][u]=min(grap[u][v], w);
}
cin>>k;
} int Find(int x)
{
if(fa[x]!=x)
return fa[x]=Find(fa[x]);
return x;
} void Union(int a, int b)
{
int x=Find(a);
int y=Find(b);
if(x!=y)
fa[x]=y;
} int Kruskal()//去除限制点生成md棵最小生成树
{
int res=0;
sort(edges.begin(), edges.end(), cmp);
for(int i=0; i<=n; ++i)
fa[i]=i;
for(int i=0; i<edges.size(); ++i)
{
Edge& e=edges[i];
if(e.u==1 || e.v==1 || Find(e.u)==Find(e.v)) continue;
Union(e.u, e.v);
mst[e.u][e.v]=mst[e.v][e.u]=grap[e.u][e.v];
res+=grap[e.u][e.v];
}
return res;
} int mmst()//生成最小md度限制生成树
{
int minw[25], minv[25], res=0;
for(int i=0; i<=n; ++i) minw[i]=INF;
for(int i=2; i<=n; ++i)
if(grap[1][i]!=-1)
{
int x=Find(i);
if(minw[x] > grap[1][i])
{
minw[x]=grap[1][i];
minv[x]=i;
}
}
for(int i=1; i<=n; ++i)
if(minw[i]!=INF)
{
md++;
mst[1][minv[i]]=mst[minv[i]][1]=1;
res+=grap[1][minv[i]];
}
return res;
} void dfs(int x,int fa)
{
for(int i=2; i<=n; i++)
if(mst[x][i] && i!=fa)
{
if(dp[i].w==-1)
{
if(grap[x][i]<dp[x].w)
{
dp[i].u=dp[x].u;
dp[i].v=dp[x].v;
dp[i].w=dp[x].w;
}
else
dp[i].u=x,dp[i].v=i,dp[i].w=grap[x][i];
}
dfs(i,x);
}
}
int mkst()
{
int res=0;
for(int i=md+1; i<=k; i++)
{
for(int j=0; j<=n; ++j)
dp[j].w=-1;
dp[1].w=-INF;
for(int j=2; j<=n; j++)
if(mst[1][j])
dp[j].w=-INF;
dfs(1,-1);
int t=0,minn=INF;
for(int j=2; j<=n; j++)
if(grap[1][j]!=-1&&grap[1][j]-dp[j].w<minn)
{
minn=grap[1][j]-dp[j].w;
t=j;
}
if(minn>=0)
break;
mst[1][t]=mst[t][1]=1;
int x=dp[t].u,y=dp[t].v;
mst[x][y]=mst[y][x]=0;
res+=minn;
}
return res;
} int main()
{
//READFILE
int t;
t=1;//有的oj多组数据此处改为cin>>t即可
while(t--)
{
Init();
int ans1=Kruskal();
int ans2=mmst();
int ans3=mkst();
ans=ans1+ans2+ans3;
cout<<"Total miles driven: "<<ans<<endl;
if(t)cout<<endl;
}
return 0;
}

poj1639,uva1537,uvalive2099,scu1622,fzu1761 Picnic Planning (最小限制生成树)的更多相关文章

  1. POJ 1639 Picnic Planning 最小k度生成树

    Picnic Planning Time Limit: 5000MS   Memory Limit: 10000K Total Submissions:11615   Accepted: 4172 D ...

  2. poj1639 Picnic Planning 最小度数限制生成树

    题意:若干个人开车要去park聚会,可是park能停的车是有限的,为k.所以这些人要通过先开车到其它人家中,停车,然后拼车去聚会.另外,车的容量是无限的,他们家停车位也是无限的. 求开车总行程最短. ...

  3. POJ1639 - Picnic Planning

    原题链接 Description 给出一张个点的无向边权图并钦定点,求使得点的度不超过的最小生成树. Solution 首先无视掉与相连的所有边,原图会变成若干互不连通的个块.对每个块分别求MST,再 ...

  4. POJ 1861 ——Network——————【最小瓶颈生成树】

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 15268   Accepted: 5987   Specia ...

  5. bzoj2395[Balkan 2011]Timeismoney最小乘积生成树

    所谓最小乘积生成树,即对于一个无向连通图的每一条边均有两个权值xi,yi,在图中找一颗生成树,使得Σxi*Σyi取最小值. 直接处理问题较为棘手,但每条边的权值可以描述为一个二元组(xi,yi),这也 ...

  6. HDU5697 刷题计划 dp+最小乘积生成树

    分析:就是不断递归寻找靠近边界的最优解 学习博客(必须先看这个): 1:http://www.cnblogs.com/autsky-jadek/p/3959446.html 2:http://blog ...

  7. 【UVA 11354】 Bond (最小瓶颈生成树、树上倍增)

    [题意] n个点m条边的图 q次询问 找到一条从s到t的一条边 使所有边的最大危险系数最小 InputThere will be at most 5 cases in the input file.T ...

  8. 算法提高 最小方差生成树(Kruskal)_模板

     算法提高 最小方差生成树   时间限制:1.0s   内存限制:256.0MB        问题描述 给定带权无向图,求出一颗方差最小的生成树. 输入格式 输入多组测试数据.第一行为N,M,依次是 ...

  9. 【BZOJ2395】【Balkan 2011】Timeismoney 最小乘积生成树

    链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...

随机推荐

  1. 第 8 篇:内容支持 Markdown 语法,接口返回包含解析后的 HTML

    作者:HelloGitHub-追梦人物 在 Django博客教程(第二版) 中,我们给博客内容增加了 Markdown 的支持,博客详情接口应该返回解析后的 HTML 内容. 来回顾一下 Post 模 ...

  2. 教你怎么"白嫖"图床

    本次白嫖适用于有自己域名的. 访问 又拍云,注册 注册好后,访问又拍云联盟 按照说明申请即可 结束 静等通过即可,经过我与又拍云联系核实他们审核通过都会在每周五的下午18:00统一发送审核结果邮件通知 ...

  3. 出行即服务(MAAS)框架

    转自 出行即服务(MAAS)框架 一.概况 在共享交通模式和智能信息技术的基础之上,城市出现了全新的交通理念——“出行即服务(Mobility-as-a-Service,简称MaaS)”.MaaS将各 ...

  4. Shiro框架--将Shrio的session改成HTTPSession数据

    重写 FormAuthenticationFilter类 的 onLoginSuccess()方法即可 import javax.servlet.ServletRequest; import java ...

  5. win10病毒和威胁防护无法重新启动解决方法

    1.检查电脑中是否安装了任何的第三方反病毒软件 (例如 360.腾讯电脑管家等)?如果有的话,麻烦您将其卸载,卸载完毕后重启设备,再看一下病毒和威胁防护能否正常启动:2.按 "Windows ...

  6. 晚间测试3 B. 单(single)

    题目描述 单车联通大街小巷.这就是出题人没有写题目背景的原因. 对于一棵树,认为每条边长度为 \(1\),每个点有一个权值\(a[i]\).\(dis(u,v)\)为点\(u\)到\(v\)的最短路径 ...

  7. 019 01 Android 零基础入门 01 Java基础语法 02 Java常量与变量 13 数据类型转换的代码示例

    019 01 Android 零基础入门 01 Java基础语法 02 Java常量与变量 13 数据类型转换的代码示例 本文知识点:Java中的数据类型转换案例 学习视频有误,导致没法写文,文章内容 ...

  8. matlab中find 查找非零元素的索引和值

    来源:https://ww2.mathworks.cn/help/matlab/ref/find.html?searchHighlight=find&s_tid=doc_srchtitle f ...

  9. 诊断日志知多少 | DiagnosticSource 在.NET上的应用

    1. 引言 最近为了解决ABP集成CAP时无法通过拦截器启用工作单元的问题,从小伙伴那里学了一招.借助DiagnossticSource,可以最小改动完成需求.关于DiagnosticSource晓东 ...

  10. ASP。NET Web表单模型,部分呈现和事件

    下载EventExample.zip - 41.33 KB 下载EventandAjaxExample.zip - 41.94 KB 介绍 通过参考ASP获得Web应用程序环境及其约束的概述.NET ...