(转载)微软数据挖掘算法:Microsoft 聚类分析算法(2)
介绍:
Microsoft 聚类分析算法是一种“分段”或“聚类分析”算法,它遍历数据集中的事例,以将它们分组到包含相似特征的分类中。 在浏览数据、标识数据中的异常及创建预测时,这些分组十分有用。
聚类分析模型标识数据集中可能无法通过随意观察在逻辑上得出的关系。 例如,轻松就能猜想到,骑自行车上下班的人的居住地点通常离其工作地点不远。 但该算法可以找出有关骑自行车上下班人员的其他并不明显的特征。 在下面的关系图中,分类 A 表示有关通常开车上班人员的数据,而分类 B 表示通常骑自行车上班人员的数据。
聚类分析算法不同于 Microsoft 决策树算法等其他数据挖掘算法,区别在于无需指定可预测列便能生成聚类分析模型。 聚类分析算法严格地根据数据以及该算法所标识的分类中存在的关系定型。
算法的原理
Microsoft 聚类分析算法首先标识数据集中的关系并根据这些关系生成一系列分类。 散点图是一种非常有用的方法,可以直观地表示算法如何对数据进行分组,如下面的关系图所示。 散点图可以表示数据集中的所有事例,在该图中每个事例就是一个点。 分类对该图中的点进行分组并阐释该算法所标识的关系。
在最初定义分类后,算法将通过计算确定分类表示点分组情况的适合程度,然后尝试重新定义这些分组以创建可以更好地表示数据的分类。 该算法将循环执行此过程,直到它不能再通过重新定义分类来改进结果为止。
通过选择指定的聚类分析方法,可以自定义该算法的工作方式,从而限制分类的最大数量,或者更改创建一个分类所必需的支持量。 有关详细信息,请参阅 Microsoft 聚类分析算法技术参考。 此算法包括两种热门的的聚类分析方法:k-means 聚类分析和期望最大化方法。
应用场景介绍
通过上一篇中我们采用Microsoft决策树分析算法对已经发生购买行为的订单中的客户属性进行了分析,可以得到几点重要的信息,这里做个总结:
1、对于影响购买自行车行为最重要的因素为:家中是否有小汽车,其次是年龄,再次是地域
2、通过折叠树对于比较想买自行车的顾客群体特征主要是:家里没有车、年龄在45岁一下、不在北美地区、家里也没有孩子(大米国里面的屌丝层次)、
同样还有就是家里有一辆车、年龄在37到53之间、通勤距离小于10Miles,家里孩子少于4个,然后年收入在58000$以上(大米国的高富帅了)
其实决策树算法最主要的应用场景就是分析影响某种行为的因素排序,通过这种算法我们可以知道某些特定群体他们都会有几个比较重要的属性,比如家里有没有车、年龄等,但是我们想要分析这部分特定群体其特有属性就没法做到,而要分析这种特定群体所共同含有的共同属性就需要今天我们的Microsoft聚类分析算法出场了,简单点讲就是:物以类分、人以群分,通过聚类分析算法我们要找到那些将要买自行车的顾客群里都有哪些属性,比如当我们晚上进入广场会看到,广场大妈一群、儿童扎在一群、打篮球的一群、还有一群情侣在广场边幽暗的树林里等等,而他们这些团队之间是有差别的,若果要去卖儿童玩具...那种群体是你最想靠近的自然而然了。
技术准备
(1)同样我们利用微软提供的案例数据仓库(AdventureWorksDW2008R2),两张事实表,一张已有的历史购买自行车记录的历史,另外一张就是我们将要挖掘的收集过来可能发生购买自行车的人员信息表,可以参考上一篇文章
(2)VS、SQL Server、 Analysis Services没啥可介绍的,安装数据库的时候全选就可以了。
下面我们进入主题,同样我们继续利用上次的解决方案,依次步骤如下:
(1)打开解决方案,进入到“挖掘模型”模板
通过上面可以看到已经存在一种决策树算法了,我们来添加另外一种算法。
2、右键单击“结构”列,选择“新建挖掘模型”,输入名称即可
点击确定,这样我们新建立的聚类分析就会增加在挖掘模型中,这里我们使用的主键和决策树一样,同样的预测行为也是一样的,输入列也是,可以更改。
下一步,部署处理该挖掘模型。
结果分析
同样这里面我们采用“挖掘模型查看器”进行查看,这里挖掘模型我们选择“Clustering”,这里面会提供四个选项卡,下面我们依次介绍,直接晒图:
同样这里面我们选择要发生购买自行车的群里,颜色最深的为最可能购买自行车的群里,图中箭头我们已经显示出来了,同样我们也可以找到最不可能买自行车的一群人,也就是“分类四”,他们之间线条的强弱表示关联关系强弱,当然这里为了好记我们可以给他们改改名,直接选择类,右键重命名。
如上图,下面我们要做的就是要分析这些群体有啥特征了,当然我们最关心的为:最想买自行车的一群人、不想买自行车的也可以分析,至于不明真相的群体、路人群体甲、乙...这些个都是些打酱油的了,我们就不分析了。
我们打开“分类剖面图”看看:
哈...这几类群体的特征已经展示出来了,如果玩数据久了,会对图表有一种直观敏锐,对数据也要保持一种特定的嗅觉。
我们重新整理一下这个“分类剖面图”的列的顺序,根据我们关注的强弱横向依次展开,如图:
图中第一列为属性,比如年龄、小汽车的数量、家里孩子数量等,第二列为各个属性的图例,这里面是根据属性的值类型进行的图例展示,一般分为两种,比如年龄在库中存储的值类型通常分布在1-100之间,故图例采取分段取样,形成一个从小到大的柱状体,中间含有有一个棱形图,棱形图的大小代表属性中群体的密集度,比如上图的顾客集中在29岁到48岁之间:
当然如果该属性值不为离散的属性值的话,就采取不同颜色的原型图表表示,专业术语叫做:直方图,面板中有一个地方可以设置直方图条数,也就是该属性值所取得的最多属性值个数。比如:家里孩子的总数,一般分为0个、1个、2个、3个、其他...
纳尼!...上面这个图例中没有3个孩子的,这里面的图例也是通过数据采样得到,只取量比较多的作为展示,上图说明家里有3个孩子的比较少。
下面我们分析一下最想购买自行车的群体特征:
首先从图中可以看到年龄集中在40来岁,平均为43.65岁
我汗....最小年龄为29岁.平均年龄43.65岁..最大年龄81.79岁..估计微软案例数据库中的数据也不一定可靠,抑或者米国的人群特征就这样三十岁以下的人都不喜欢骑自行车反而80多岁的人还买自行车,或者这个店就不卖给三十岁以下的顾客,当然有可能年轻人没有买的,大部分是老人给孩子买的,这个就不分析了..反正数据是这么说的,有图有真相!
家里没有小汽车的或者只有一辆小汽车的购买的概率大部分集中在0.3以上...而大于一辆小汽车的家庭购买自行车的概率就很少...家里四辆车的概率则少到了0.003...接近不会买的概率了...
家里有一个孩子的概率最高0.483...家里没有孩子的根本不会买自行车...我去...基本验证了我上面的推测,看来大部分人是买自行车给子女骑的,没有孩子就不买了,上图中的没有子女的购买自信车的概率为0.000,还有一个属性可以研究下,那就是是否有房子,看图:
嗯...想买车的群体家里大部分都有房子,也就说有固定住所,他们买自行车的概率高达0.854...而没有房子的则少到可怜...为0.146。
别的属性也可以通过该属性面板进行分析,可以分析出我们想要的那部分群体的属性特征,有针对性的做到定向营销。
以上只是通过分类的剖面图进行了局部分析,VS还提供了另外一个专门列举属性特征的面板:分类特征。
我们点击开这个面板看看:
通过上面的图表展示,已经将我们想要了解的这部分群体,赤裸裸的展现出来了,嗯,来瞅瞅..法国职业:技术人员、英国职业:熟练的手工、都有房子、地区:北美地区、年龄范围:41-48岁之间、年收入:35459.9-57244.9之间、家里都有一个孩子等等.....当然别的群体也可以分析,这里就不展示了。
同样我们也可以针对某一个属性,有针对性的对两组群体进行比较,这里就应用到另一个面板:“分类对比”,我突然想到可以针对“性别”这个属性,把IT行业和非IT行业进行对比,估计结果应该不寒而栗...呵呵...题外话,下面看图:
尼玛...上图的图片我看了下..发现有一个属性值特别有趣,年收入在10000-29950之间的基本是不打算买自行车了,然而年收入到了29950-1700000,想买自行车的概率就高很多了,上图中可以看到。嗯...自行车也是车...想要买车还是得有钱才行。
准确性验证
最后我们来验证一下今天这个聚类分析算法的准确性如何,和上篇文章中的决策树算法有何差距,我们点击进入数据挖掘准确性图表:
上图中我们可以看到,今天这次用的聚类分析算法,分数为0.72,比上一篇的决策树算法0.87,还是略有差距的,当然不能仅以分数来评比两种算法的好坏,不同的挖掘需求需要不同的挖掘模型,同样不同的挖掘模型就需要不同的挖掘分析算法。
不过通过上图有几点需要特别注意的,数据分析算法的准确性是要取决于基础数据的多少,也就是说数据量越大,你所分析的数据结果将越准确,同样这也是未来大数据的概念的形成,没有数据任何牛逼的算法也没有招,而当数据达到一定量级别之后,任务个别的不准确也将被大数据的事实所掩盖,这就是大数据时代的意义所在。
当然凡事都得拿数据说话,不能凭空乱想,上图中的理想模型也就是红色的那条就验证了我刚才的说法,当数据总体达到50%以后,我们的数据挖掘结果就是100分,100分啥含义?完全正确!也就是说你下一步想干啥是我们完全能推测出来的,当然在数据量少的时候,我们就无能为力了,我们所利用的任何数据挖掘算法理论上讲将无限的接近这条红线(理想模型),将永远无法超越,而这接近的过程就是我们大数据时代的推动。
当然还有一条最烂的随机预测模型它永远的以50%的概率神一般存在着...因为对于买自行车这件事只有两种结果,一个是买,另一个就是不买,它所预测准确的概率永远就是一半一半...50%.....。
本文建模来自:(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 聚类分析算法)
(转载)微软数据挖掘算法:Microsoft 聚类分析算法(2)的更多相关文章
- (转载)微软数据挖掘算法:Microsoft顺序分析和聚类分析算法(8)
前言 本篇文章继续我们的微软挖掘系列算法总结,前几篇文章已经将相关的主要算法做了详细的介绍,我为了展示方便,特地的整理了一个目录提纲篇:大数据时代:深入浅出微软数据挖掘算法总结连载,有兴趣的童鞋可以点 ...
- 大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 聚类分析算法)
原文:(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 聚类分析算法) 本篇文章主要是继续上一篇Microsoft决策树分析算法后,采用另外一种分析算法对目标顾客群体的挖掘 ...
- (转载)微软数据挖掘算法:Microsoft 目录篇
本系列文章主要是涉及内容为微软商业智能(BI)中一系列数据挖掘算法的总结,其中涵盖各个算法的特点.应用场景.准确性验证以及结果预测操作等,所采用的案例数据库为微软的官方数据仓库案例(Adventure ...
- (转载)微软数据挖掘算法:Microsoft 关联规则分析算法(7)
前言 本篇继续我们的微软挖掘算法系列总结,前几篇我们分别介绍了:微软数据挖掘算法:Microsoft 决策树分析算法(1).微软数据挖掘算法:Microsoft 聚类分析算法(2).微软数据挖掘算法: ...
- (转载)微软数据挖掘算法:Microsoft 时序算法之结果预测及其彩票预测(6)
前言 本篇我们将总结的算法为Microsoft时序算法的结果预测值,是上一篇文章微软数据挖掘算法:Microsoft 时序算法(5)的一个总结,上一篇我们已经基于微软案例数据库的销售历史信息表,利用M ...
- (转载)微软数据挖掘算法:Microsoft 时序算法(5)
前言 本篇文章同样是继续微软系列挖掘算法总结,前几篇主要是基于状态离散值或连续值进行推测和预测,所用的算法主要是三种:Microsoft决策树分析算法.Microsoft聚类分析算法.Microsof ...
- (转载)微软数据挖掘算法:Microsoft Naive Bayes 算法(3)
介绍: Microsoft Naive Bayes 算法是一种基于贝叶斯定理的分类算法,可用于探索性和预测性建模. Naïve Bayes 名称中的 Naïve 一词派生自这样一个事实:该算法使用贝叶 ...
- 《BI那点儿事》Microsoft 聚类分析算法——三国人物身份划分
什么是聚类分析? 聚类分析属于探索性的数据分析方法.通常,我们利用聚类分析将看似无序的对象进行分组.归类,以达到更好地理解研究对象的目的.聚类结果要求组内对象相似性较高,组间对象相似性较低.在三国数据 ...
- (转载)微软数据挖掘算法:Microsoft 神经网络分析算法(10)
前言 有段时间没有进行我们的微软数据挖掘算法系列了,最近手头有点忙,鉴于上一篇的神经网络分析算法原理篇后,本篇将是一个实操篇,当然前面我们总结了其它的微软一系列算法,为了方便大家阅读,我特地整理了一篇 ...
随机推荐
- MongoDb学习(五)---gridfs --http文件下载
现在网上的文章都是用的低版本的jar包,而最新的jar包,下载的方法进行了改变.在网上也没找到好的方法.就用原生的方法进行下载, 我也不知道对不对.反正可以下载了.就先这样吧.后期准备还是用低版本的开 ...
- 24位PCM采样数据转成16位算法,已实现PCM转WAV在线工具源码支持24bits、16bits、8bits
目录 算法来源 js版24位PCM转8位.16位代码 js版8位.16位PCM转成24位 附:浏览器控制台下载数据文件代码 相关实现 最近收到几个24位的PCM录音源文件,Recoder库原有的PCM ...
- Turtlebot3新手教程-应用-跟随
本文针对如何利用Turtlebot3可实现的各种应用进行讲解 具体步骤如下: [Remote PC]安装应用包 cd ~/catkin_ws/src git clone https://github. ...
- JS内存
内存是用来存什么的 通俗的来说呢,就是用来存 var let function const 声明的变量. 内存的大小 与操作系统有关,64位1.4G 32位0.7G. 为啥内存大小要这么设计,为啥不是 ...
- JAVA编程环境与基本数据类型
<JAVA编程环境与基本数据类型> 随笔目录 # <JAVA编程环境与基本数据类型> 随笔目录 - Java小实例 java的编程环境 java数据类型 Java小实例 jav ...
- Sentry(v20.12.1) K8S 云原生架构探索,玩转前/后端监控与事件日志大数据分析,高性能+高可用+可扩展+可伸缩集群部署
Sentry 算是目前开源界集错误监控,日志打点上报,事件数据实时分析最好用的软件了,没有之一.将它部署到 Kubernetes,再搭配它本身自带的利用 Clickhouse (大数据实时分析引擎)构 ...
- 一个简单的字符串,为什么 Redis 要设计的如此特别
Redis 的 9 种数据类型 本文GitHub已收录:https://zhouwenxing.github.io/ Redis 中支持的数据类型到 5.0.5 版本,一共有 9 种.分别是: 1.B ...
- 搭乘“AI大数据”快车,肌肤管家,助力美业数字化发展
经过疫情的发酵,加速推动各行各业进入数据时代的步伐.美业,一个通过自身技术.产品让用户变美的行业,在AI大数据的加持下表现尤为突出. 对于美妆护肤企业来说,一边是进入存量市场,一边是疫后的复苏期,一边 ...
- .NET 调整图片尺寸(Resize)各种方法
本文中如无特别说明 .NET 指 .NET 5或者更高版本,代码同样可用于 .NET Core 前言 调整图片尺寸最常用的场景就是生成缩略图,一般为保持纵横比缩小,如果图片放大会使图片变得模糊,如果确 ...
- Redis-4.X 版本 Redis Cluster集群 (一)
一 创建redis cluster 集群前提条件: 1 ) 每个redis node 节点采用相同的硬件配置,相同的密码. 2 ) 每个节点必须开启的参数: cluster-enabled yes # ...