【poj 1984】&【bzoj 3362】Navigation Nightmare(图论--带权并查集)
题意:平面上给出N个点,知道M个关于点X在点Y的正东/西/南/北方向的距离。问在刚给出一定关系之后其中2点的曼哈顿距离((x1,y1)与(x2,y2):l x1-x2 l+l y1-y2 l),未知则输出-1。
解法:带权并查集。sx[x]表示x与其根结点的横坐标的差,sy[x]表示x与其根结点的纵坐标的差。}
输入需要好好处理一下:1.我自定义(x,y,E)的x,y之间的横坐标差为正,W为负,N时的纵坐标差为正,S时为负;2.需要给询问排序,再一个个将关系存储下来。
注意——我将x,y合并联盟时的关系式就偷懒按 【poj 1182】食物链(图论--带权并查集) 所提到的用方块图直接推,发现样例对了,还1A了,速度也比较快!(我代码也算是很清晰的吧)❀(๑╯◡╰๑)❀ 所以我真的向神犇求解啊!!
P.S.我碰运气地没有完全推导、不负责任地打了ins( )里的式子,而对于这个hyc有另外的一种简单易懂的坐法:出现fx,x,fy,y,可知把fy附到x所在联盟下时,可以把 fy 和 y 颠倒相对位置,让输入的对于 x 和 y 的距离 d 可以直截了当地得到利用,赋值给“一身轻”的 y。
1 int fy=ffind(y);
2 sx[fy]=-sx[y],sy[fy]=-sy[y]; fa[fy]=y, fa[y]=x;
3 sx[y]=w[t][0]*d,sy[y]=w[t][0]*d;
下面是我的完整代码——
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<algorithm>
5 #include<iostream>
6 using namespace std;
7
8 const int N=40010,M=40010,K=10010;
9 struct quiry{int x,y,t,id;}q[K];
10 struct node{int x,y,d,t;}a[M];
11 int n,m,k;
12 char s[3];
13 int fa[N],sx[N],sy[N],ans[K];
14 int w[5][2]={{1,0},{0,-1},{-1,0},{0,1}};//ESWN,multi
15
16 bool cmp(quiry x,quiry y) {return x.t<y.t;}
17 int mabs(int x) {return x>0?x:-x;}
18 int ffind(int x)
19 {
20 if (fa[x]!=x)
21 {
22 int fx=fa[x];
23 fa[x]=ffind(fx);
24 sx[x]+=sx[fx];
25 sy[x]+=sy[fx];
26 }
27 return fa[x];
28 }
29 void ins(int x,int y,int d,int t)
30 {
31 int fx=ffind(x),fy=ffind(y);
32 if (fx==fy) return;
33 fa[fy]=fx;
34 sx[fy]=w[t][0]*d+sx[x]-sx[y];//
35 sy[fy]=w[t][1]*d+sy[x]-sy[y];//
36 }
37 int solve(int x,int y)
38 {
39 int fx=ffind(x),fy=ffind(y);
40 if (fx!=fy) return -1;
41 return mabs(sx[x]-sx[y])+mabs(sy[x]-sy[y]);
42 }
43 int main()
44 {
45 scanf("%d%d",&n,&m);
46 for (int i=1;i<=m;i++)
47 {
48 scanf("%d%d%d%s",&a[i].x,&a[i].y,&a[i].d,s);
49 if (s[0]=='E') a[i].t=0;
50 if (s[0]=='S') a[i].t=1;
51 if (s[0]=='W') a[i].t=2;
52 if (s[0]=='N') a[i].t=3;
53 }
54 scanf("%d",&k);
55 for (int i=1;i<=k;i++)
56 {
57 scanf("%d%d%d",&q[i].x,&q[i].y,&q[i].t);
58 q[i].id=i;
59 }
60 sort(q+1,q+1+k,cmp);
61 for (int i=1;i<=n;i++) fa[i]=i,sx[i]=sy[i]=0;
62 int t=0;
63 for (int i=1;i<=k;i++)
64 {
65 while (t<q[i].t && t<m) {t++; ins(a[t].x,a[t].y,a[t].d,a[t].t);}
66 ans[q[i].id]=solve(q[i].x,q[i].y);
67 }
68 for (int i=1;i<=k;i++) printf("%d\n",ans[i]);
69 return 0;
70 }
【poj 1984】&【bzoj 3362】Navigation Nightmare(图论--带权并查集)的更多相关文章
- 【poj 1988】Cube Stacking(图论--带权并查集)
题意:有N个方块,M个操作{"C x":查询方块x上的方块数:"M x y":移动方块x所在的整个方块堆到方块y所在的整个方块堆之上}.输出相应的答案. 解法: ...
- 【poj 1962】Corporative Network(图论--带权并查集 模版题)
P.S.我不想看英文原题的,但是看网上题解的题意看得我 炒鸡辛苦&一脸懵 +_+,打这模版题的代码也纠结至极了......不得已只能自己翻译了QwQ . 题意:有一个公司有N个企业,分成几个网 ...
- 【POJ 1984】Navigation Nightmare(带权并查集)
Navigation Nightmare Description Farmer John's pastoral neighborhood has N farms (2 <= N <= 40 ...
- POJ1984:Navigation Nightmare(带权并查集)
Navigation Nightmare Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 7871 Accepted: 2 ...
- poj 1984 Navigation Nightmare(带权并查集+小小的技巧)
题目链接:http://poj.org/problem?id=1984 题意:题目是说给你n个线,并告知其方向,然后对于后面有一些询问,每个询问有一个时间点,要求你输出在该时间点a,b的笛卡尔距离,如 ...
- 【bzoj 1202】[HNOI2005] 狡猾的商人(图论--带权并查集+前缀和)
题意:一个账本记录了N个月以来的收入情况,现在有一个侦探员不同时间偷看到M段时间内的总收入,问这个账本是否为假账. 解法:带权并查集+前缀和. 判断账本真假是通过之前可算到的答案与当前读入的值是否 ...
- 【poj 1182】食物链(图论--带权并查集)
题意:有3种动物A.B.C,形成一个"A吃B, B吃C,C吃A "的食物链.有一个人对N只这3类的动物有M种说法:第一种说法是"1 X Y",表示X和Y是同类. ...
- POJ 1703 Find them, Catch them(带权并查集)
传送门 Find them, Catch them Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 42463 Accep ...
- (中等) POJ 1703 Find them, Catch them,带权并查集。
Description The police office in Tadu City decides to say ends to the chaos, as launch actions to ro ...
随机推荐
- Flutter 布局类组件:简介
前言 布局类组件都会包含一个或多个子组件,不同的布局类组件对子组件排版(layout)方式不同. 我们知道,Element树才是最终的绘制树,Element树是通过Widget树来创建的(通过Widg ...
- GitHub README.md文本编写指南
标题 在文字前写#,注意文字与#之间有一个空格 # 一级标题## 二级标题### 三级标题 以此类推或者用连续的减号或等号写在文字之下: 标题- 粗体斜体 **这个是粗体*这个是斜体****这个是粗体 ...
- K8s 平台可以如何处理 Pod 预授权问题
前言 TKEx-CSIG 是基于腾讯公有云 TKE 和 EKS 容器服务开发的内部上云容器服务平台,为解决公司内部容器上云提供云原生平台,以兼容云原生.适配自研业务.开源协同为最大特点. 业务容器上云 ...
- 【Oracle】下载11.2.0.4的地址
https://updates.oracle.com/download/13390677.html 这个地址就是下载Oracle 11.2.0.4版本的地址,需要有metalink账号才可以下载
- 攻防世界—pwn—cgpwn2
题目分析 题目提示 checksec检查文件保护机制 使用ida查看伪代码 hello函数存在溢出,与level2类似 信息收集 system地址 name的地址 编写脚本 from pwn impo ...
- 1.2V转3.3V芯片电路图,超简电路
镍氢可充电电池1.2V转成3.3V的电路和电子产品很多,在实际适用中,即使是两节镍氢电池串联供电也是会有供电电压下降和不稳定的影响,这是因为电池电量减少,而导致电池的电压也是会随着降低. 一般情况下, ...
- Flink 中极其重要的 Time 与 Window 详细解析(深度好文,建议收藏)
前言 Flink 是流式的.实时的 计算引擎 上面一句话就有两个概念,一个是流式,一个是实时. 流式:就是数据源源不断的流进来,也就是数据没有边界,但是我们计算的时候必须在一个有边界的范围内进行,所以 ...
- 人工智能"眼睛"——摄像头
摄像头机器视觉人工智能的"眼睛",其重要性在嵌入式领域不言而喻.但是如何理解和使用摄像头却是一个非常棘手的问题.本文主要针对调试摄像头过程中遇到的问题,对摄像头的基本原理及概述进行 ...
- 一站式入口服务|爱奇艺微服务平台 API 网关实战 原创 弹性计算团队 爱奇艺技术产品团队
一站式入口服务|爱奇艺微服务平台 API 网关实战 原创 弹性计算团队 爱奇艺技术产品团队
- The router relies on a tree structure which makes heavy use of common prefixes, it is basically a compact prefix tree (or just Radix tree).
https://github.com/julienschmidt/httprouter/