题意:平面上给出N个点,知道M个关于点X在点Y的正东/西/南/北方向的距离。问在刚给出一定关系之后其中2点的曼哈顿距离((x1,y1)与(x2,y2):l x1-x2 l+l y1-y2 l),未知则输出-1。

解法:带权并查集。sx[x]表示x与其根结点的横坐标的差,sy[x]表示x与其根结点的纵坐标的差。}
输入需要好好处理一下:1.我自定义(x,y,E)的x,y之间的横坐标差为正,W为负,N时的纵坐标差为正,S时为负;2.需要给询问排序,再一个个将关系存储下来。

注意——我将x,y合并联盟时的关系式就偷懒按 【poj 1182】食物链(图论--带权并查集) 所提到的用方块图直接推,发现样例对了,还1A了,速度也比较快!(我代码也算是很清晰的吧)❀(๑╯◡╰๑)❀ 所以我真的向神犇求解啊!!

P.S.我碰运气地没有完全推导、不负责任地打了ins( )里的式子,而对于这个hyc有另外的一种简单易懂的坐法:出现fx,x,fy,y,可知把fy附到x所在联盟下时,可以把 fy 和 y 颠倒相对位置,让输入的对于 x 和 y 的距离 d 可以直截了当地得到利用,赋值给“一身轻”的 y。

1 int fy=ffind(y);
2 sx[fy]=-sx[y],sy[fy]=-sy[y]; fa[fy]=y, fa[y]=x;
3 sx[y]=w[t][0]*d,sy[y]=w[t][0]*d;

下面是我的完整代码——

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<algorithm>
5 #include<iostream>
6 using namespace std;
7
8 const int N=40010,M=40010,K=10010;
9 struct quiry{int x,y,t,id;}q[K];
10 struct node{int x,y,d,t;}a[M];
11 int n,m,k;
12 char s[3];
13 int fa[N],sx[N],sy[N],ans[K];
14 int w[5][2]={{1,0},{0,-1},{-1,0},{0,1}};//ESWN,multi
15
16 bool cmp(quiry x,quiry y) {return x.t<y.t;}
17 int mabs(int x) {return x>0?x:-x;}
18 int ffind(int x)
19 {
20 if (fa[x]!=x)
21 {
22 int fx=fa[x];
23 fa[x]=ffind(fx);
24 sx[x]+=sx[fx];
25 sy[x]+=sy[fx];
26 }
27 return fa[x];
28 }
29 void ins(int x,int y,int d,int t)
30 {
31 int fx=ffind(x),fy=ffind(y);
32 if (fx==fy) return;
33 fa[fy]=fx;
34 sx[fy]=w[t][0]*d+sx[x]-sx[y];//
35 sy[fy]=w[t][1]*d+sy[x]-sy[y];//
36 }
37 int solve(int x,int y)
38 {
39 int fx=ffind(x),fy=ffind(y);
40 if (fx!=fy) return -1;
41 return mabs(sx[x]-sx[y])+mabs(sy[x]-sy[y]);
42 }
43 int main()
44 {
45 scanf("%d%d",&n,&m);
46 for (int i=1;i<=m;i++)
47 {
48 scanf("%d%d%d%s",&a[i].x,&a[i].y,&a[i].d,s);
49 if (s[0]=='E') a[i].t=0;
50 if (s[0]=='S') a[i].t=1;
51 if (s[0]=='W') a[i].t=2;
52 if (s[0]=='N') a[i].t=3;
53 }
54 scanf("%d",&k);
55 for (int i=1;i<=k;i++)
56 {
57 scanf("%d%d%d",&q[i].x,&q[i].y,&q[i].t);
58 q[i].id=i;
59 }
60 sort(q+1,q+1+k,cmp);
61 for (int i=1;i<=n;i++) fa[i]=i,sx[i]=sy[i]=0;
62 int t=0;
63 for (int i=1;i<=k;i++)
64 {
65 while (t<q[i].t && t<m) {t++; ins(a[t].x,a[t].y,a[t].d,a[t].t);}
66 ans[q[i].id]=solve(q[i].x,q[i].y);
67 }
68 for (int i=1;i<=k;i++) printf("%d\n",ans[i]);
69 return 0;
70 }

【poj 1984】&【bzoj 3362】Navigation Nightmare(图论--带权并查集)的更多相关文章

  1. 【poj 1988】Cube Stacking(图论--带权并查集)

    题意:有N个方块,M个操作{"C x":查询方块x上的方块数:"M x y":移动方块x所在的整个方块堆到方块y所在的整个方块堆之上}.输出相应的答案. 解法: ...

  2. 【poj 1962】Corporative Network(图论--带权并查集 模版题)

    P.S.我不想看英文原题的,但是看网上题解的题意看得我 炒鸡辛苦&一脸懵 +_+,打这模版题的代码也纠结至极了......不得已只能自己翻译了QwQ . 题意:有一个公司有N个企业,分成几个网 ...

  3. 【POJ 1984】Navigation Nightmare(带权并查集)

    Navigation Nightmare Description Farmer John's pastoral neighborhood has N farms (2 <= N <= 40 ...

  4. POJ1984:Navigation Nightmare(带权并查集)

    Navigation Nightmare Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 7871   Accepted: 2 ...

  5. poj 1984 Navigation Nightmare(带权并查集+小小的技巧)

    题目链接:http://poj.org/problem?id=1984 题意:题目是说给你n个线,并告知其方向,然后对于后面有一些询问,每个询问有一个时间点,要求你输出在该时间点a,b的笛卡尔距离,如 ...

  6. 【bzoj 1202】[HNOI2005] 狡猾的商人(图论--带权并查集+前缀和)

    题意:一个账本记录了N个月以来的收入情况,现在有一个侦探员不同时间偷看到M段时间内的总收入,问这个账本是否为假账. 解法:带权并查集+前缀和.   判断账本真假是通过之前可算到的答案与当前读入的值是否 ...

  7. 【poj 1182】食物链(图论--带权并查集)

    题意:有3种动物A.B.C,形成一个"A吃B, B吃C,C吃A "的食物链.有一个人对N只这3类的动物有M种说法:第一种说法是"1 X Y",表示X和Y是同类. ...

  8. POJ 1703 Find them, Catch them(带权并查集)

    传送门 Find them, Catch them Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 42463   Accep ...

  9. (中等) POJ 1703 Find them, Catch them,带权并查集。

    Description The police office in Tadu City decides to say ends to the chaos, as launch actions to ro ...

随机推荐

  1. Java 使用拦截器无限转发/重定向无限循环/重定向次数过多报错(StackOverflowError) 解决方案

    说明:当使用拦截器出现"请求转发"无限循环或者"重定向"次数过多这种问题的时候,一般都是 拦截器 设置错了 情况一:请求转发时没有配置排除拦截路径,就是说你访问 ...

  2. SIGGRAPH Asia 2020 电脑动画节(CAF)获奖短片出炉!

    电脑动画节(CAF) 是SIGGRAPH Asia盛会最受瞩目的环节之一.2020年12月15日,SIGGRAPH Asia 2020虚拟线上会议正式宣布了电脑动画节的三部获奖短片:最佳作品奖< ...

  3. python学习笔记 | 顺序表的常规操作

    ''' @author: 人人都爱小雀斑 @time: 2020/3/11 8:46 @desc: 顺序表的相关操作 ''' class SequenceList: def __init__(self ...

  4. docker 删除和拉取镜像

    删除镜像 # docker rmi -f 镜像id # 删除指定镜像 docker rmi -f 25d5f6s564 # docker rmi -f 镜像id 镜像id # 删除多个镜像 docke ...

  5. 【设计模式】Java设计模式精讲之原型模式

    简单记录 - 慕课网 Java设计模式精讲 Debug方式+内存分析 & 设计模式之禅-秦小波 文章目录 1.原型模式的定义 原型-定义 原型-类型 2.原型模式的实现 原型模式的通用类图 原 ...

  6. 【Oracle】查看oracle用户相关权限

    系统权限 SELECT * FROM DBA_SYS_PRIVS WHERE GRANTEE = 'CHAXUN' UNION ALL SELECT * FROM DBA_SYS_PRIVS WHER ...

  7. RWCTF2020 DBaaSadge 复现

    数据库题目 2020RWCTF DBaaSadge WP 这是一个很有意思的题目,难到让我绝望,跟着大佬smity的思路跑一下,求大佬抱抱. https://mp.weixin.qq.com/s/jv ...

  8. 误删除SAP ECC中的profile文件

    环境:ECC6.0 EHP4  FOR ORACLE ON WINDWS X64下 今天在RZ10配置系统参数文件的时候,不小心错删除了instance profile文件,这下惨了,这是操作系统层级 ...

  9. ALV中的分隔条(SPLITTER_CONTROL)

    如上图,可以做成左右的分割,当然也可以做成上下的分割效果,在每个分割的容器内,显示各自的内容. 需要使用的class: cl_gui_splitter_container, cl_gui_custom ...

  10. Graph Explore的使用介绍

    我在Graph API开发中用的最多的测试工具就是Graph Explore,这个是微软开发的网页版的Graph API的测试工具,能满足我大部分需求. 访问网址是:Graph Explorer - ...