若不考虑 \(m\) 的限制,打表可以发现:

  • 当 \(p=2^n\left(n>1\right)\) 时,最大的 \(f_i\) 是 \(5\),有十个 \(i\) 的 \(f_i\) 是 \(5\),它们可以通过 \(p\) 算出来。
  • 当 \(p=3\times 2^n\left(n>0\right)\) 时,最大的 \(f_i\) 是 \(5\),有一个 \(i\) 的 \(f_i\) 是 \(5\),它可以通过 \(p\) 算出来。
  • 当 \(p=2\) 时,最大的 \(f_i\) 是 \(f_6=f_7=f_8=f_{14}=f_{15}=f_{22}=f_{23}=f_{24}=f_{30}=f_{31}=6\)。
  • 当 \(p=3\) 时,最大的 \(f_i\) 是 \(f_{15}=6\)。
  • 当 \(p=5\) 时,最大的 \(f_i\) 是 \(f_{79}=5\)。

剩下最大的 \(f_i\leq 4\),而 \(4\) 的分布是很密集的。到后来就固定了,因为 \(p^2\) 无法对前 \(100\) 产生影响。

所以讨论完上面的情况,然后用暴力跑即可。

具体证明我也不会,可以问 \(\text A\color{red}{\text{utumnKite}}\) 神仙,我就暂时咕咕咕了。

code:

#include<bits/stdc++.h>
using namespace std;
#define Db double
#define Min(x,y)((x)<(y)?x:y)
#define For(i,x,y)for(i=x;i<=(y);i++)
#define int long long
const int num[10]={3,4,7,11,12,15,20,28,60,92};
int f[100005],p,n,m;
void work()
{
int mx=0,j,i;
For(i,1,100000)
{
f[i]=6;
For(j,1,signed(sqrt(Db(i))))
if(j!=p)f[i]=Min(f[i],f[i-j*j]+1);
}
For(i,1,Min(100000,n))
if(f[i]>mx)mx=f[i];
cout<<mx<<endl;
For(i,1,n)
if(f[i]==mx)
{
if(!m--)break;
cout<<i<<' ';
if(i==15&&p==3||i==31&&p==2||i==79&&p==5)break;
}
}
bool pd(bool type)
{
int x=p;
if(!type)
{
if(x%4)return 0;
x>>=2;
}
else
{
if(x%6)return 0;
x/=6;
}
while(x>1)
if(x&1)return 0;
else x>>=1;
return 1;
}
signed main()
{
int i;
cin>>n>>p>>m;
if(pd(0))
{
For(i,0,9)
if(num[i]*p*(p>>1)>0&&num[i]*p*(p>>1)<=n)
{
if(!i)cout<<"5\n";
if(m--)cout<<num[i]*p*(p>>1)<<' ';
else exit(0);
}
else break;
if(!i)work();
}
else if(pd(1)&&14*(p/3)*(p/3)<=n)
{
cout<<"5\n";
if(m--)cout<<14*(p/3)*(p/3)<<' ';
}
else work();
while(m>0)cout<<"-1 ",m--;
return 0;
}

T147403 「TOC Round 4」吃,都可以吃的更多相关文章

  1. [LOJ#531]「LibreOJ β Round #5」游戏

    [LOJ#531]「LibreOJ β Round #5」游戏 试题描述 LCR 三分钟就解决了问题,她自信地输入了结果-- > -- 正在检查程序 -- > -- 检查通过,正在评估智商 ...

  2. [LOJ#526]「LibreOJ β Round #4」子集

    [LOJ#526]「LibreOJ β Round #4」子集 试题描述 qmqmqm有一个长为 n 的数列 a1,a2,……,an,你需要选择集合{1,2,……,n}的一个子集,使得这个子集中任意两 ...

  3. [LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机)

    [LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机) 试题描述 IOI 的比赛开始了.Jsp 和 Rlc 坐在一个角落,这时他们听到了一个异样的声音 …… 接着他们发现自己收 ...

  4. loj #547. 「LibreOJ β Round #7」匹配字符串

    #547. 「LibreOJ β Round #7」匹配字符串   题目描述 对于一个 01 串(即由字符 0 和 1 组成的字符串)sss,我们称 sss 合法,当且仅当串 sss 的任意一个长度为 ...

  5. [LOJ#530]「LibreOJ β Round #5」最小倍数

    [LOJ#530]「LibreOJ β Round #5」最小倍数 试题描述 第二天,LCR 终于启动了备份存储器,准备上传数据时,却没有找到熟悉的文件资源,取而代之的是而屏幕上显示的一段话: 您的文 ...

  6. [LOJ#516]「LibreOJ β Round #2」DP 一般看规律

    [LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...

  7. [LOJ#515]「LibreOJ β Round #2」贪心只能过样例

    [LOJ#515]「LibreOJ β Round #2」贪心只能过样例 试题描述 一共有 \(n\) 个数,第 \(i\) 个数 \(x_i\) 可以取 \([a_i , b_i]\) 中任意值. ...

  8. [LOJ#525]「LibreOJ β Round #4」多项式

    [LOJ#525]「LibreOJ β Round #4」多项式 试题描述 给定一个正整数 k,你需要寻找一个系数均为 0 到 k−1 之间的非零多项式 f(x),满足对于任意整数 x 均有 f(x) ...

  9. LibreOJ #517. 「LibreOJ β Round #2」计算几何瞎暴力

    二次联通门 : LibreOJ #517. 「LibreOJ β Round #2」计算几何瞎暴力 /* LibreOJ #517. 「LibreOJ β Round #2」计算几何瞎暴力 叫做计算几 ...

随机推荐

  1. cookie和webstorage

    HTML 5 Web 存储 HTML5 提供了两种在客户端存储数据的新方法: localStorage - 没有时间限制的数据存储 <!DOCTYPE html> <html> ...

  2. 【转】Event Driven Programming

    FROM: http://lazyfoo.net/tutorials/SDL/03_event_driven_programming/index.php Event Driven Programmin ...

  3. Hive 如何快速拉取大批量数据

    用hive来做数仓类操作,或者大数据的运算,是没有疑问的,至少在你没有更多选择之前. 当我们要hive来做类似于大批量数据的select时,也许问题就会发生了变化. 1. 通用解决方案之分页 首先,我 ...

  4. yum安装报睡眠错误的解决方法

    可能是系统自动升级正在运行,yum在锁定状态中.可以通过强制关掉yum进程:#rm -f /var/run/yum.pid然后就可以使用yum了.

  5. 9 HTTP和HTTPS

    9 HTTP和HTTPS 状态码 定义 1xx 报告 接收到请求,继续进程 2xx 成功 步骤成功接收,被理解,并被接受 3xx 重定向 为了完成请求,必须采取进一步措施 4xx 客户端出错 请求包括 ...

  6. 教你写个简单到的 Redis Client 框架 - .NET Core

    目录 1,关于 Redis RESP 定义数据类型 2,定义异步消息状态机 3,定义命令发送模板 4,定义 Redis Client 5,实现简单的 RESP 解析 6,实现命令发送客户端 7,如何使 ...

  7. 强迫自己学习Jquery 最喜欢的hitch函数

    用过dojo的人都知道hitch. 通过绑定一个函数的上下文得到一个新函数,当然还能绑定参数 Jquery里没有这个功能,实在太不方便了. 这是我不喜欢用Jquery的第一原因,第二原因是Jquery ...

  8. tcpack--4延时ack

    TCP在收到数据后必须发送ACK给对端,但如果每收到一个包就给一个ACK的话会使得网络中被注入过多报文.TCP的做法是在收到数据时不立即发送ACK,而是设置一个定时器,如果在定时器超时之前有数据发送给 ...

  9. openwrt——preinit.sh学习

    boot_hook_init() { local hook="${1}_hook" export -n "PI_STACK_LIST=${PI_STACK_LIST:+$ ...

  10. linux文件描述符、软硬连接、输入输出重定向

    引用链接:https://blog.csdn.net/qq769651718/article/details/79459346 文件描述符的作用: 文件描述符是linux操作系统中特有的概念.其相当于 ...