题意

给你\(n\)和\(m\),问满足以下条件的数列的个数:

  • 数列长度为\(n\)
  • 数列值域范围为\(\left[1,m\right]\)
  • 数列有且仅有一对相等的数
  • 数列是单峰数列(先严格递增后严格递减,严格递增或严格递减)

解题思路

首先从\(m\)元素中挑出\(n-1\)个不同的值,有\(C_m^{n-1}\)种方法。现在数列的值域就可以只看成\(\left[1,n-1\right]\)了。

然后这\(n-1\)个元素中,先放置好\(n-1\),假设重复元素的值为\(i(i\in\left[1,n-2\right])\)。那么这3个元素的位置只有一种放置方法符合条件。还剩下\(n-3\)个元素,这些元素既可以在峰的左侧,也可以在峰的右侧,且对于所有分法都有且只有一种放置方法,所以有\(2^{n-3}\)种方法。最后乘上\(i\)的取值方法数也就是\(n-2\),结果如下:

\[Ans=(n-2)C_m^{n-1}2^{n-3}
\]

AC代码

#include <bits/stdc++.h>
using namespace std; typedef long long ll;
typedef pair<int,int> pi; #define x first
#define y second #define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define rall(x) (x).rbegin(),(x).rend()
#define endl '\n' const double PI=acos(-1.0); mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
int rnd(int l,int r){return l+rng()%(r-l+1);} namespace IO{
bool REOF = 1; //为0表示文件结尾
inline char nc() {
static char buf[100000], *p1 = buf, *p2 = buf;
return p1 == p2 && REOF && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? (REOF = 0, EOF) : *p1++;
} template<class T>
inline bool read(T &x) {
char c = nc();bool f = 0; x = 0;
while (c<'0' || c>'9')c == '-' && (f = 1), c = nc();
while (c >= '0'&&c <= '9')x = (x << 3) + (x << 1) + (c ^ 48), c = nc();
if(f)x=-x;
return REOF;
} template<typename T, typename... T2>
inline bool read(T &x, T2 &... rest) {
read(x);
return read(rest...);
} inline bool need(char &c) { return ((c >= 'a') && (c <= 'z')) || ((c >= '0') && (c <= '9')) || ((c >= 'A') && (c <= 'Z')); }
// inline bool need(char &c) { return ((c >= 'a') && (c <= 'z')) || ((c >= '0') && (c <= '9')) || ((c >= 'A') && (c <= 'Z')) || c==' '; } inline bool read_str(char *a) {
while ((*a = nc()) && need(*a) && REOF)++a; *a = '\0';
return REOF;
} inline bool read_dbl(double &x){
bool f = 0; char ch = nc(); x = 0;
while(ch<'0'||ch>'9') {f|=(ch=='-');ch=nc();}
while(ch>='0'&&ch<='9'){x=x*10.0+(ch^48);ch=nc();}
if(ch == '.') {
double tmp = 1; ch = nc();
while(ch>='0'&&ch<='9'){tmp=tmp/10.0;x=x+tmp*(ch^48);ch=nc();}
}
if(f)x=-x;
return REOF;
} template<class TH> void _dbg(const char *sdbg, TH h){ cerr<<sdbg<<'='<<h<<endl; } template<class TH, class... TA> void _dbg(const char *sdbg, TH h, TA... a) {
while(*sdbg!=',')cerr<<*sdbg++;
cerr<<'='<<h<<','<<' '; _dbg(sdbg+1, a...);
} template<class T> ostream &operator<<(ostream& os, vector<T> V) {
os << "["; for (auto vv : V) os << vv << ","; return os << "]";
} template<class T> ostream &operator<<(ostream& os, set<T> V) {
os << "["; for (auto vv : V) os << vv << ","; return os << "]";
} template<class T> ostream &operator<<(ostream& os, map<T,T> V) {
os << "["; for (auto vv : V) os << vv << ","; return os << "]";
} template<class L, class R> ostream &operator<<(ostream &os, pair<L,R> P) {
return os << "(" << P.st << "," << P.nd << ")";
} #define debug(...) _dbg(#__VA_ARGS__, __VA_ARGS__)
} using namespace IO;
const int maxn=2e5+5;
const int maxv=2e5+5;
const int mod=998244353; // 998244353 1e9+7
const int INF=1e9+7; // 1e9+7 0x3f3f3f3f 0x3f3f3f3f3f3f3f3f
const double eps=1e-12; int dx[4]={0,1,0,-1};
//int dx[8]={1,0,-1,1,-1,1,0,-1};
int dy[4]={1,0,-1,0};
//int dy[8]={1,1,1,0,0,-1,-1,-1}; // #define ls (x<<1)
// #define rs (x<<1|1)
// #define mid ((l+r)>>1)
// #define lson ls,l,mid
// #define rson rs,mid+1,r // int tot,head[maxn];
// struct Edge{
// int v,nxt;
// Edge(){}
// Edge(int _v,int _nxt):v(_v),nxt(_nxt){}
// }e[maxn<<1];
// void init(){
// tot=1;
// memset(head,0,sizeof(head));
// }
// void addedge(int u,int v){
// e[tot]=Edge(v,head[u]); head[u]=tot++;
// e[tot]=Edge(u,head[v]); head[v]=tot++;
// }
// void addarc(int u,int v){
// e[tot]=Edge(v,head[u]); head[u]=tot++;
// } /**
* ********** Backlight **********
* 仔细读题
* 注意边界条件
* 记得注释输入流重定向
* 没有思路就试试逆向思维
* 加油,奥利给
*/
ll n,m;
ll qp(ll a,ll b){
ll res=1;
while(b){
if(b&1)res=res*a%mod;
a=a*a%mod;
b>>=1;
}
return res;
} ll inv(ll x){return qp(x,mod-2);} void solve(){
read(n,m);
ll ans=n-2;
for(int i=1;i<=m;i++)ans=ans*i%mod;
for(int i=1;i<=n-1;i++)ans=ans*inv(i)%mod;
for(int i=1;i<=m-n+1;i++)ans=ans*inv(i)%mod;
ans=ans*qp(2,n-2)%mod;
ans=ans*inv(2)%mod;
printf("%lld\n",ans);
} int main()
{
// freopen("in.txt","r",stdin);
// ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
// int _T; read(_T); for(int _=1;_<=_T;_++)solve();
// while(read(n))solve();
solve();
return 0;
}

Codeforces1312D Count the Arrays 组合数学的更多相关文章

  1. D. Count the Arrays 计数题

    D. Count the Arrays 也是一个计数题. 题目大意: 要求构造一个满足题意的数列. \(n\) 代表数列的长度 数列元素的范围 \([1,m]\) 数列必须有且仅有一对相同的数 存在一 ...

  2. Codeforces Round #258 (Div. 2) D. Count Good Substrings —— 组合数学

    题目链接:http://codeforces.com/problemset/problem/451/D D. Count Good Substrings time limit per test 2 s ...

  3. HDU 4372 Count the Buildings 组合数学

    题意:有n个点上可能有楼房,从前面可以看到x栋楼,从后面可以看到y栋,问楼的位置有多少种可能. 印象中好像做过这个题,

  4. Educational Codeforces Round 83 D. Count the Arrays(组合,逆元,快速幂)

    题意: 从 m 个数中选 n - 1 个数组成先增后减的长为 n 的数组. 思路: 因为 n 个数中有两个数相同,所以每种情况实际上只有 n - 1 个不同的数--$c_m^{n - 1}$, 除去最 ...

  5. [程序设计语言]-[核心概念]-02:名字、作用域和约束(Bindings)

    本系列导航 本系列其他文章目录请戳这里. 1.名字.约束时间(Binding Time) 在本篇博文开始前先介绍两个约定:第一个是“对象”,除非在介绍面向对象语言时,本系列中出现的对象均是指任何可以有 ...

  6. 305. Number of Islands II

    题目: A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand  ...

  7. java.util.AbstractStringBuilder源码分析

    AbstractStringBuilder是一个抽象类,是StringBuilder和StringBuffer的父类,分析它的源码对StringBuilder和StringBuffer代码的理解有很大 ...

  8. Java数据结构和算法总结-字符串及高频面试题算法

    前言:周末闲来无事,在七月在线上看了看字符串相关算法的讲解视频,收货颇丰,跟着视频讲解简单做了一下笔记,方便以后翻阅复习同时也很乐意分享给大家.什么字符串在算法中有多重要之类的大路边上的客套话就不多说 ...

  9. LeetCode第七天

    ==数组 Medium== 40.(162)Find Peak Element JAVA //斜率思想,二分法 class Solution { public int findPeakElement( ...

随机推荐

  1. 当面试官问我ArrayList和LinkedList哪个更占空间时,我这么答让他眼前一亮

    前言 今天介绍一下Java的两个集合类,ArrayList和LinkedList,这两个集合的知识点几乎可以说面试必问的. 对于这两个集合类,相信大家都不陌生,ArrayList可以说是日常开发中用的 ...

  2. Kaggle-pandas(1)

    Creating-reading-and-writing 戳我进原网站 教程 1.创建与导入 DataFrame import pandas as pd pd.DataFrame({'Yes': [5 ...

  3. IDEA-Translation最优秀的翻译插件

    IDEA最优秀的翻译插件 效果 特性 多翻译引擎 Google翻译 有道翻译 百度翻译 多语言互译 文档翻译 语音朗读 自动选词 自动单词拆分 单词本 使用 申请有道智云翻译服务(可选): 注册有道智 ...

  4. Python嫌多(线程/进程)太慢? 嫌Scrapy太麻烦?没事,异步高调走起!——瓜子二手车

    基本概念了解: 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手.很多已经做案例的人,却不知道如何去学习更加高深的知识.那么针对这三类人,我 ...

  5. 在龙芯mips64el平台编译bmon

    bmon 是一个 实时命令行流量监控软件,但作者在github并没有提供mips64el的版本.下面记录一下编译过程.可以在这里下载bmon.v4.0.linux-mips64el.tar.gz. 环 ...

  6. C#LeetCode刷题之#706-设计哈希映射(Design HashMap)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/4116 访问. 不使用任何内建的哈希表库设计一个哈希映射 具体地说 ...

  7. Python对list操作的一些小技巧

    Python对list操作的一些小技巧  由于要搞数学建模,于是从熟悉已久的C++转战Python.虽然才上手,但是Python的语法糖就让我大呼过瘾.不得不说相比于C/C++,Python对于数据的 ...

  8. 【WC2013】 糖果公园 - 树上莫队

    问题描述 Candyland 有一座糖果公园,公园里不仅有美丽的风景.好玩的游乐项目,还有许多免费糖果的发放点,这引来了许多贪吃的小朋友来糖果公园游玩.糖果公园的结构十分奇特,它由 n 个游览点构成, ...

  9. MacOS抓包工具Charles

    抓包工具有wireshark, tcpdump, 还有就是Charles. 今天分享的是最后一个Charles.抓包分2个, 一个是移动端的,一个是macOS自带的应用. 安装Charles http ...

  10. jQuery - AJAX笔记

    @ 目录 什么是AJAX 关于 jQuery 与 AJAX jQuery AJAX 参考手册 jQuery ajax - ajax() 方法 定义和用法 语法 参数 options async bef ...