URL 去重的 6 种方案!(附详细实现代码)
URL 去重在我们日常工作中和面试中很常遇到,比如这些:
可以看出,包括阿里,网易云、优酷、作业帮等知名互联网公司都出现过类似的面试题,而且和 URL 去重比较类似的,如 IP 黑/白名单判断等也经常出现在我们的工作中,所以我们本文就来“盘一盘”URL 去重的问题。
URL 去重思路
在不考虑业务场景和数据量的情况下,我们可以使用以下方案来实现 URL 的重复判断:
- 使用 Java 的 Set 集合,根据添加时的结果来判断 URL 是否重复(添加成功表示 URL 不重复);
- 使用 Redis 中的 Set 集合,根据添加时的结果来判断 URL 是否重复;
- 将 URL 都存储在数据库中,再通过 SQL 语句判断是否有重复的 URL;
- 把数据库中的 URL 一列设置为唯一索引,根据添加时的结果来判断 URL 是否重复;
- 使用 Guava 的布隆过滤器来实现 URL 判重;
- 使用 Redis 的布隆过滤器来实现 URL 判重。
以上方案的具体实现如下。
URL 去重实现方案
1.使用 Java 的 Set 集合判重
Set 集合天生具备不可重复性,使用它只能存储值不相同的元素,如果值相同添加就会失败,因此我们可以通过添加 Set 集合时的结果来判定 URL 是否重复,实现代码如下:
public class URLRepeat {
// 待去重 URL
public static final String[] URLS = {
"www.apigo.cn",
"www.baidu.com",
"www.apigo.cn"
};
public static void main(String[] args) {
Set<String> set = new HashSet();
for (int i = 0; i < URLS.length; i++) {
String url = URLS[i];
boolean result = set.add(url);
if (!result) {
// 重复的 URL
System.out.println("URL 已存在了:" + url);
}
}
}
}
程序的执行结果为:
URL 已存在了:www.apigo.cn
从上述结果可以看出,使用 Set 集合可以实现 URL 的判重功能。
2.Redis Set 集合去重
使用 Redis 的 Set 集合的实现思路和 Java 中的 Set 集合思想思路是一致的,都是利用 Set 的不可重复性实现的,我们先使用 Redis 的客户端 redis-cli 来实现一下 URL 判重的示例:
从上述结果可以看出,当添加成功时表示 URL 没有重复,但添加失败时(结果为 0)表示此 URL 已经存在了。
我们再用代码的方式来实现一下 Redis 的 Set 去重,实现代码如下:
// 待去重 URL
public static final String[] URLS = {
"www.apigo.cn",
"www.baidu.com",
"www.apigo.cn"
};
@Autowired
RedisTemplate redisTemplate;
@RequestMapping("/url")
public void urlRepeat() {
for (int i = 0; i < URLS.length; i++) {
String url = URLS[i];
Long result = redisTemplate.opsForSet().add("urlrepeat", url);
if (result == 0) {
// 重复的 URL
System.out.println("URL 已存在了:" + url);
}
}
}
以上程序的执行结果为:
URL 已存在了:www.apigo.cn
以上代码中我们借助了 Spring Data 中的 RedisTemplate
实现的,在 Spring Boot 项目中要使用 RedisTemplate
对象我们需要先引入 spring-boot-starter-data-redis
框架,配置信息如下:
<!-- 添加操作 RedisTemplate 引用 -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
然后需要再项目中配置 Redis 的连接信息,在 application.properties 中配置如下内容:
spring.redis.host=127.0.0.1
spring.redis.port=6379
#spring.redis.password=123456 # Redis 服务器密码,有密码的话需要配置此项
经过以上两个步骤之后,我们就可以在 Spring Boot 的项目中正常的使用 RedisTemplate
对象来操作 Redis 了。
3.数据库去重
我们也可以借助数据库实现 URL 的重复判断,首先我们先来设计一张 URL 的存储表,如下图所示:
此表对应的 SQL 如下:
/*==============================================================*/
/* Table: urlinfo */
/*==============================================================*/
create table urlinfo
(
id int not null auto_increment,
url varchar(1000),
ctime date,
del boolean,
primary key (id)
);
/*==============================================================*/
/* Index: Index_url */
/*==============================================================*/
create index Index_url on urlinfo
(
url
);
其中 id
为自增的主键,而 url
字段设置为索引,设置索引可以加快查询的速度。
我们先在数据库中添加两条测试数据,如下图所示:
我们使用 SQL 语句查询,如下图所示:
如果结果大于 0 则表明已经有重复的 URL 了,否则表示没有重复的 URL。
4.唯一索引去重
我们也可以使用数据库的唯一索引来防止 URL 重复,它的实现思路和前面 Set 集合的思想思路非常像。
首先我们先为字段 URL 设置了唯一索引,然后再添加 URL 数据,如果能添加成功则表明 URL 不重复,反之则表示重复。
创建唯一索引的 SQL 实现如下:
create unique index Index_url on urlinfo
(
url
);
5.Guava 布隆过滤器去重
布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。
布隆过滤器的核心实现是一个超大的位数组和几个哈希函数,假设位数组的长度为 m,哈希函数的个数为 k。
以上图为例,具体的操作流程:假设集合里面有 3 个元素 {x, y, z},哈希函数的个数为 3。首先将位数组进行初始化,将里面每个位都设置位 0。对于集合里面的每一个元素,将元素依次通过 3 个哈希函数进行映射,每次映射都会产生一个哈希值,这个值对应位数组上面的一个点,然后将位数组对应的位置标记为 1,查询 W 元素是否存在集合中的时候,同样的方法将 W 通过哈希映射到位数组上的 3 个点。如果 3 个点的其中有一个点不为 1,则可以判断该元素一定不存在集合中。反之,如果 3 个点都为 1,则该元素可能存在集合中。注意:此处不能判断该元素是否一定存在集合中,可能存在一定的误判率。可以从图中可以看到:假设某个元素通过映射对应下标为 4、5、6 这 3 个点。虽然这 3 个点都为 1,但是很明显这 3 个点是不同元素经过哈希得到的位置,因此这种情况说明元素虽然不在集合中,也可能对应的都是 1,这是误判率存在的原因。
我们可以借助 Google 提供的 Guava 框架来操作布隆过滤器,实现我们先在 pom.xml 中添加 Guava 的引用,配置如下:
<!-- 添加 Guava 框架 -->
<!-- https://mvnrepository.com/artifact/com.google.guava/guava -->
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>28.2-jre</version>
</dependency>
URL 判重的实现代码:
public class URLRepeat {
// 待去重 URL
public static final String[] URLS = {
"www.apigo.cn",
"www.baidu.com",
"www.apigo.cn"
};
public static void main(String[] args) {
// 创建一个布隆过滤器
BloomFilter<String> filter = BloomFilter.create(
Funnels.stringFunnel(Charset.defaultCharset()),
10, // 期望处理的元素数量
0.01); // 期望的误报概率
for (int i = 0; i < URLS.length; i++) {
String url = URLS[i];
if (filter.mightContain(url)) {
// 用重复的 URL
System.out.println("URL 已存在了:" + url);
} else {
// 将 URL 存储在布隆过滤器中
filter.put(url);
}
}
}
}
以上程序的执行结果为:
URL 已存在了:www.apigo.cn
6.Redis 布隆过滤器去重
除了 Guava 的布隆过滤器,我们还可以使用 Redis 的布隆过滤器来实现 URL 判重。在使用之前,我们先要确保 Redis 服务器版本大于 4.0(此版本以上才支持布隆过滤器),并且开启了 Redis 布隆过滤器功能才能正常使用。
以 Docker 为例,我们来演示一下 Redis 布隆过滤器安装和开启,首先下载 Redis 的布隆过器,然后再在重启 Redis 服务时开启布隆过滤器,如下图所示:
布隆过滤器使用
布隆过滤器正常开启之后,我们先用 Redis 的客户端 redis-cli 来实现一下布隆过滤器 URL 判重了,实现命令如下:
在 Redis 中,布隆过滤器的操作命令不多,主要包含以下几个:
- bf.add 添加元素;
- bf.exists 判断某个元素是否存在;
- bf.madd 添加多个元素;
- bf.mexists 判断多个元素是否存在;
- bf.reserve 设置布隆过滤器的准确率。
接下来我们使用代码来演示一下 Redis 布隆过滤器的使用:
import redis.clients.jedis.Jedis;
import utils.JedisUtils;
import java.util.Arrays;
public class BloomExample {
// 布隆过滤器 key
private static final String _KEY = "URLREPEAT_KEY";
// 待去重 URL
public static final String[] URLS = {
"www.apigo.cn",
"www.baidu.com",
"www.apigo.cn"
};
public static void main(String[] args) {
Jedis jedis = JedisUtils.getJedis();
for (int i = 0; i < URLS.length; i++) {
String url = URLS[i];
boolean exists = bfExists(jedis, _KEY, url);
if (exists) {
// 重复的 URL
System.out.println("URL 已存在了:" + url);
} else {
bfAdd(jedis, _KEY, url);
}
}
}
/**
* 添加元素
* @param jedis Redis 客户端
* @param key key
* @param value value
* @return boolean
*/
public static boolean bfAdd(Jedis jedis, String key, String value) {
String luaStr = "return redis.call('bf.add', KEYS[1], KEYS[2])";
Object result = jedis.eval(luaStr, Arrays.asList(key, value),
Arrays.asList());
if (result.equals(1L)) {
return true;
}
return false;
}
/**
* 查询元素是否存在
* @param jedis Redis 客户端
* @param key key
* @param value value
* @return boolean
*/
public static boolean bfExists(Jedis jedis, String key, String value) {
String luaStr = "return redis.call('bf.exists', KEYS[1], KEYS[2])";
Object result = jedis.eval(luaStr, Arrays.asList(key, value),
Arrays.asList());
if (result.equals(1L)) {
return true;
}
return false;
}
}
以上程序的执行结果为:
URL 已存在了:www.apigo.cn
总结
本文介绍了 6 种 URL 去重的方案,其中 Redis Set、Redis 布隆过滤器、数据库和唯一索引这 4 种解决方案适用于分布式系统,如果是海量的分布式系统,建议使用 Redis 布隆过滤器来实现 URL 去重,如果是单机海量数据推荐使用 Guava 的布隆器来实现 URL 去重。
URL 去重的 6 种方案!(附详细实现代码)的更多相关文章
- 零基础学python之函数与模块(附详细的代码和安装发布文件过程)
代码重用——函数与模块 摘要:构建函数,创建模块,安装发布文件,安装pytest和PEP 8插件,确认PEP8兼容性以及纠错 重用代码是构建一个可维护系统的关键. 代码组是Python中对块的叫法. ...
- 零基础学Python之结构化数据(附详细的代码解释和执行结果截图)
3结构化数据 字典(查找表).集合.元组.列表 3.1字典 是有两列任意多行的表,第一列存储一个键,第二列存储一个值. 它存储键/值对,每个唯一的键有一个唯一与之关联的值.(类似于映射.表) 它不会维 ...
- 零基础学python之入门和列表数据(附详细的代码解释和执行结果截图)
Python学习笔记 1 快速入门 下载安装好Python之后,在开始找到 双击打开一个窗口,这是一个shell界面编辑窗口,点击左上角的file——new file新建一个窗口,这里可以输入完整的代 ...
- codevs 2924 数独挑战 x(三种做法+超详细注释~)
2924 数独挑战 时间限制: 1 s 空间限制: 1000 KB 题目等级 : 钻石 Diamond 题目描述 Description “芬兰数学家因卡拉,花费3个月时间设计出了世界上迄今 ...
- [原创]手把手教你写网络爬虫(7):URL去重
手把手教你写网络爬虫(7) 作者:拓海 摘要:从零开始写爬虫,初学者的速成指南! 封面: 本期我们来聊聊URL去重那些事儿.以前我们曾使用Python的字典来保存抓取过的URL,目的是将重复抓取的UR ...
- Spring Boot 配置文件密码加密两种方案
Spring Boot 配置文件密码加密两种方案 jasypt 加解密 jasypt 是一个简单易用的加解密Java库,可以快速集成到 Spring 项目中.可以快速集成到 Spring Boot 项 ...
- 15分钟带你了解前端工程师必知的javascript设计模式(附详细思维导图和源码)
15分钟带你了解前端工程师必知的javascript设计模式(附详细思维导图和源码) 前言 设计模式是一个程序员进阶高级的必备技巧,也是评判一个工程师工作经验和能力的试金石.设计模式是程序员多年工作经 ...
- [转] Asp.Net 导出 Excel 数据的9种方案
湛刚 de BLOG 原文地址 Asp.Net 导出 Excel 数据的9种方案 简介 Excel 的强大之处在于它不仅仅只能打开Excel格式的文档,它还能打开CSV格式.Tab格式.website ...
- SP避免Form重复提交的三种方案
SP避免Form重复提交的三种方案 1) javascript ,设置一个变量,只允许提交一次. <script language="javascript"> ...
随机推荐
- MyBatisPlus分页查询,删除操作
分页查询 分页查询在网页使用十分之多 原始的limit进行分页 pageHelper第三方插件 3. MP内置的分页插件 导入配置 如何使用,官网的代码如下 //分页插件 @Bean public P ...
- 比原链(Bytom)正式开源Bytom-JavaScript库
12月13日,比原链(Bytom)正式开源Bytom-JavaScript库,这个库是官方原生支持的新一代JavaScript SDK接口.JavaScript是世界上最多人使用的解释性脚本语言,JS ...
- Java—时间的原点 计算时间所使用的 Date类/DateFormat类/Calendar类
Date类 类 Date 表示特定的瞬间,精确到毫秒. 毫秒概念:1000毫秒=1秒 毫秒的0点: System.currentTimeMillis() 返回值long类型参数 用于获取当前日期的毫 ...
- Flutter 容器 (1) - Center
Center容器用来居中widget import 'package:flutter/material.dart'; class AuthList extends StatelessWidget { ...
- day8 文件
添加中文 需要编码 f = open("123.txt",'w',encoding='utf-8') 字符串转化二进制编码 encode() 1.文件: 计算机 ...
- Salesforce学习笔记之吐槽
迄今感到的几个不方便 1. SOQL里没有SELECT * ,只好根据参考手册和用vs code的一个插件Schema Explorer来辅助生成SELECT语句. 2. SOQL不支持注释,Deve ...
- Android Studio上传项目到GitHub出错
上传代码到Github出错: 一.github push文件过大(超过50M会有警告,超出100M就会被限制) error: GH001: Large files detected. this exc ...
- 谱聚类的python实现
什么是谱聚类? 就是找到一个合适的切割点将图进行切割,核心思想就是: 使得切割的边的权重和最小,对于无向图而言就是切割的边数最少,如上所示.但是,切割的时候可能会存在局部最优,有以下两种方法: (1) ...
- 防止用户利用PHP代码DOS造成用光网络带宽
用PHP代码调用sockets,直接用服务器的网络攻击别的IP,常见代码如下: 代码如下:$packets = 0; $ip = $_GET[\'ip\']; $rand = $_GET[\'port ...
- Locust性能测试2--登录示例
无论是做接口自动化还是做压测,解决了登录就离成功进步了一大半,下面做个简单的登录案例,后续再说下数据依赖及参数化等问题 1. 登录 登录示例 from locust import HttpUser, ...