Kubernetes入门(四)——如何在Kubernetes中部署一个可对外服务的Tensorflow机器学习模型
机器学习模型常用Docker部署,而如何对Docker部署的模型进行管理呢?工业界的解决方案是使用Kubernetes来管理、编排容器。Kubernetes的理论知识不是本文讨论的重点,这里不再赘述,有关Kubernetes的优点读者可自行Google。笔者整理的Kubernetes入门系列重点是如何实操,前三节介绍了Kubernets的安装、Dashboard的安装,以及如何在Kubernetes中部署一个无状态的应用,本节将讨论如何在Kubernetes中部署一个可对外服务的Tensorflow机器学习模型,作为Kubernetes入门系列的结尾。
希望Kubernetes入门系列能对K8S初学者提供一些参考,对文中描述有不同观点,或者对工业级部署与应用机器学习算法模型有什么建议,欢迎大家在评论区讨论与交流~~~
1. Docker中运行TensorFolw Serving
- 运行half_plus_two模型 [1]
# Download the TensorFlow Serving Docker image and repo
docker pull tensorflow/serving
mkdir /data0/modules
cd /data0/modules
git clone https://github.com/tensorflow/serving
# Location of demo models
TESTDATA="/data0/modules/serving/tensorflow_serving/servables/tensorflow/testdata/"
# Start TensorFlow Serving container and open the REST API port
docker run -dit --rm -p 8501:8501 \
-v /data0/modules/serving/tensorflow_serving/servables/tensorflow/testdata/saved_model_half_plus_two_cpu:/models/half_plus_two \
-e MODEL_NAME=half_plus_two tensorflow/serving
# Query the model using the predict API
curl -d '{"instances": [1.0, 2.0, 5.0]}' \
-X POST http://localhost:8501/v1/models/half_plus_two:predict
# Returns => { "predictions": [2.5, 3.0, 4.5] }
2. 构建TensorFolw模型的Docker镜像
- 后台运行serving容器
docker run -d --rm --name serving_base tensorflow/serving
- 拷贝模型数据到容器中的model目录
docker cp /data0/modules/serving/tensorflow_serving/servables/tensorflow/testdata/saved_model_half_plus_two_cpu serving_base:/models/half_plus_two
- 生成关于模型的镜像
docker commit --change "ENV MODEL_NAME half_plus_two" serving_base ljh/half_plus_two
- 停止serving容器
docker kill serving_base
docker rm serving_base
- 启动服务
docker run -dit --rm -p 8501:8501 \
-e MODEL_NAME=half_plus_two ljh/half_plus_two
- 查询模型
curl -d '{"instances": [1.0, 2.0, 5.0]}' -X POST http://localhost:8501/v1/models/half_plus_two:predict
# Returns => { "predictions": [2.5, 3.0, 4.5] }
3. Kubernetes部署TensorFolw模型
创建关于模型的Deployment
- yaml文件
cat deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: halfplustwo-deployment
spec:
selector:
matchLabels:
app: halfplustwo
replicas: 1
template:
metadata:
labels:
app: halfplustwo
spec:
containers:
- name: halfplustwo
image: ljh/half_plus_two:latest
imagePullPolicy: IfNotPresent
ports:
- containerPort: 8501
name: restapi
- containerPort: 8500
name: grpc
- 创建一个Deployment:
kubectl apply -f deployment.yaml
- 展示Deployment相关信息:
kubectl get deployment -o wide
kubectl describe deployment halfplustwo-deployment
- 列出deployment创建的pods:
kubectl get pods -l app=halfplustwo
- 展示某一个pod信息
kubectl describe pod <pod-name>
使用service暴露你的应用
- yaml文件
cat service.yaml
apiVersion: v1
kind: Service
metadata:
labels:
run: halfplustwo-service
name: halfplustwo-service
spec:
ports:
- port: 8501
targetPort: 8501
name: restapi
- port: 8500
targetPort: 8500
name: grpc
selector:
app: halfplustwo
type: LoadBalancer
- 启动service
kubectl create -f service.yaml
or
kubectl apply -f service.yaml
- 查看service
kubectl get service
#output:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
halfplustwo-service LoadBalancer 10.96.181.116 <pending> 8501:30771/TCP,8500:31542/TCP 4s
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 8d
nginx NodePort 10.96.153.10 <none> 80:30088/TCP 29h
测试
curl -d '{"instances": [1.0, 2.0, 5.0]}' -X POST http://localhost:8501/v1/models/half_plus_two:predict
{"predictions": [2.5, 3.0, 4.5]}
删除deployment和service
kubectl delete -f deployment.yaml
kubectl delete -f service.yaml
4. 参考资料
[1] https://www.tensorflow.org/tfx/serving/docker TensorFlow Serving 与 Docker
[2] https://www.tensorflow.org/tfx/serving/serving_kubernetes?hl=zh_cn 将TensorFlow Serving与 Kubernetes结合使用
[3] https://towardsdatascience.com/scaling-machine-learning-models-using-tensorflow-serving-kubernetes-ed00d448c917 Scaling Machine Learning models using Tensorflow Serving & Kubernetes
[4] http://www.tuwee.cn/2019/03/03/Kubernetes+Tenserflow-serving%E6%90%AD%E5%BB%BA%E5%8F%AF%E5%AF%B9%E5%A4%96%E6%9C%8D%E5%8A%A1%E7%9A%84%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E5%BA%94%E7%94%A8/ Kubernetes+Tenserflow-serving搭建可对外服务的机器学习应用
Kubernetes入门(四)——如何在Kubernetes中部署一个可对外服务的Tensorflow机器学习模型的更多相关文章
- 如何在 Knative 中部署 WebSocket 和 gRPC 服务?
作者 | 冬岛 阿里云容器平台工程师 导读:虽然说 Knative 默认就支持 WebSocket 和 gRPC,但在使用中会发现,有时想要把自己的 WebSocket 或 gRPC 部署到 Kna ...
- kubernetes入门(01)kubernetes是什么?
一.kubernetes是什么? Kubernetes是Google开源的一个容器编排引擎,它支持自动化部署.大规模可伸缩.应用容器化管理.在生产环境中部署一个应用程序时,通常要部署该应用的多个实例以 ...
- 如何在JAVA中实现一个固定最大size的hashMap
如何在JAVA中实现一个固定最大size的hashMap 利用LinkedHashMap的removeEldestEntry方法,重载此方法使得这个map可以增长到最大size,之后每插入一条新的记录 ...
- 如何在tomcat前部署一个nginx
在tomcat应用已经发布后,如何在tomcat前部署一个nginx,可以正常访问jsp,静态资源(html,css,js) 这里tomcat的端口号是8888 upstream morris { s ...
- 如何在idea中引入一个新maven项目
如何在idea中引入一个新的maven项目,请参见如下操作:
- 如何在html中把一个图片或者表格覆盖在一张已有图片上的任意位置
如何在html中把一个图片或者表格覆盖在一张已有图片上的任意位置 <div style="position:relative;"> <img src=&quo ...
- (转)如何在Linux中统计一个进程的线程数
如何在Linux中统计一个进程的线程数 原文:http://os.51cto.com/art/201509/491728.htm 我正在运行一个程序,它在运行时会派生出多个线程.我想知道程序在运行时会 ...
- docker 中部署一个springBoot项目
docker 中部署一个springBoot项目 (1)介绍 springBoot项目 1.项目结构 2.pom.xml <?xml version="1.0" encodi ...
- kubernetes入门(04)kubernetes的核心概念(1)
一.ReplicationController/ReplicaSet 在Kubernetes集群中,ReplicationController能够确保在任意时刻,指定数量的Pod副本正在运行.如果Po ...
随机推荐
- 2.MongoDB 4.2副本集环境基于时间点的恢复
(一)MongoDB恢复概述 对于任何数据库,如果要将数据库恢复到过去的任意时间点,否需要有过去某个时间点的全备+全备之后的重做日志. 接下来根据瑞丽航空的情况进行概述: 全备:每天晚上都会进行备份: ...
- SpringCloud简记_part2
Zookeeper服务注册与发现 1)Eureka停止更新了,你怎么办? https://github.com/Netflix/eureka/wiki 2)SpringCloud整合Zookeeper ...
- Java数据结构——图的基本理论及简单实现
1. 图的定义图(graph)是由一些点(vertex)和这些点之间的连线(edge)所组成的:其中,点通常被成为"顶点(vertex)",而点与点之间的连线则被成为"边 ...
- muduo源码解析2-AtomicIntegerT类
AtomicIntegerT template<typename T> class atomicTntergerT:public noncopyable { }; 作用: 与std::ao ...
- Asp.NetCore 3.1 使用AutoMapper自动映射转换实体 DTO,Data2ViewModel
1:什么是AutoMapper? 下面为AutoMapper官方的解释: AutoMapper是一个对象-对象映射器.对象-对象映射通过将一种类型的输入对象转换为另一种类型的输出对象来工作. 使Aut ...
- javascript 查找属性的过程
当执行 一个对象赋值操作的时候 js引擎会怎样处理呢??? 例如 有个foo对象 ,要进行这个操作 foo.a=2 1, 首先会在foo对象中查找,如果不存在a属性,就会去原型链上面找,如果原 ...
- seo排名顾问不仅仅是关键词排名
http://www.wocaoseo.com/thread-246-1-1.html SEO顾问是什么,应该做什么工作呢,是不是主要做关键词的优化推广呢?做seo顾问入门的人,或者想聘请seo顾问的 ...
- .NET Core3.1 Dotnetty实战第三章
一.概要 本章主要内容就是讲解如何在dotnetty的框架中进行网络通讯以及编解码对象.数据包分包拆包的相关知识点. 后续会专门开一篇避坑的文章,主要会描述在使用dotnetty的框架时会遇到的哪些问 ...
- 2020,6招玩转 Appium 自动化测试
Appium是个什么鬼 Appium是一个移动端的自动化框架,可用于测试原生应用,移动网页应用和混合型应用,且是跨平台的.可用于IOS和Android以及firefox的操作系统.原生的应用是指用an ...
- 使用JS制作小游戏贪吃蛇
先看效果图: 过程如下: 1.首先创建一张画布地图<div class="map"> </div>: 2.创建食物的自调用函数 (function (){ ...