不定方程(Exgcd)
#include<cstdio>
using namespace std;
int x,y;
inline int abs(int a){return a>?a:-a;}
int exgcd(int a,int b){
if(!b){x=,y=;return a;}
int d=exgcd(b,a%b),t=x;
x=y,y=t-(a/b)*y;
return d;
}
int main(){
int a,b;
scanf("%d%d",&a,&b);
int d=exgcd(a,b);
if(c%d==){
x*=c/d,t=abs(b/d);
x=(x%t+t)%t;
printf("%d",x);
}
return ;
}
AC Code
参考文献:https://www.cnblogs.com/bztMinamoto/p/9321594.html
不定方程(Exgcd)的更多相关文章
- 【BZOJ】2186 沙拉公主的困惑
一道很有价值的题. [解析1]欧几里德算法求乘法逆元,前缀和 [Analysis]O(T n log n). [Sum] ①int运算.假设会超出界,第一个数前要加上(LL)即类型转换. ②gcd不变 ...
- Re:Exgcd解二元不定方程
模拟又炸了,我死亡 $exgcd$(扩展欧几里德算法)用于求$ax+by=gcd(a,b)$中$x,y$的一组解,它有很多应用,比如解二元不定方程.求逆元等等,这里详细讲解一下$exgcd$的原理. ...
- 扩展欧几里得(exgcd)-求解不定方程/求逆元
贝祖定理:即如果a.b是整数,那么一定存在整数x.y使得ax+by=gcd(a,b).换句话说,如果ax+by=m有解,那么m一定是gcd(a,b)的若干倍.(可以来判断一个这样的式子有没有解)有一个 ...
- POJ 2142 The Balance (解不定方程,找最小值)
这题实际解不定方程:ax+by=c只不过题目要求我们解出的x和y 满足|x|+|y|最小,当|x|+|y|相同时,满足|ax|+|by|最小.首先用扩展欧几里德,很容易得出x和y的解.一开始不妨令a& ...
- 【pku2115-C Looooops】拓展欧几里得-不定方程
http://poj.org/problem?id=2115 题解:一个变量从A开始加到B,每次加C并mod2^k,问加多少次.转化为不定方程:C*x+2^K*Y=B-A //poj2115 #inc ...
- UVA10090 数论基础 exgcd
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...
- 扩展欧几里得(exgcd)与同余详解
exgcd入门以及同余基础 gcd,欧几里得的智慧结晶,信息竞赛的重要算法,数论的...(编不下去了 讲exgcd之前,我们先普及一下同余的性质: 若,那么 若,,且p1,p2互质, 有了这三个式子, ...
- [模板] 数学基础:快速幂/乘/逆元/exGCD/(ex)CRT/(ex)Lucas定理
方便复制 快速乘/幂 时间复杂度 \(O(\log n)\). ll nmod; //快速乘 ll qmul(ll a,ll b){ ll l=a*(b>>hb)%nmod*(1ll< ...
- BZOJ5418[Noi2018]屠龙勇士——exgcd+扩展CRT+set
题目链接: [Noi2018]屠龙勇士 题目大意:有$n$条龙和初始$m$个武器,每个武器有一个攻击力$t_{i}$,每条龙有一个初始血量$a_{i}$和一个回复值$p_{i}$(即只要血量为负数就一 ...
随机推荐
- 树上的等差数列 [树形dp]
树上的等差数列 题目描述 给定一棵包含 \(N\) 个节点的无根树,节点编号 \(1\to N\) .其中每个节点都具有一个权值,第 \(i\) 个节点的权值是 \(A_i\) . 小 \(Hi\) ...
- Android CC框架中,新建组件无法显示布局问题
出错: 当在创建新的组件时,跳转到新组件成功,但是无法正确显示布局,即获取到布局文件的控件等. 原因: 当在创建新的组件时,默认生成MainActivity以及其布局activity_main.每个组 ...
- html中datalist 是什么??????
<datalist>标签定义选项列表,与input元素配合使用该元素,来定义input可能值.datdallist及其选项不会被显示出来,它仅仅是合法的输入值列表. <input i ...
- JAVA8—————StringJoiner类
JAVA8——StringJoiner类引言:在阅读项目代码是,突然看到了StringJoiner这个类的使用,感觉很有意思,对实际开发中也有用,实际上是运用了StringBuilder的一个拼接字符 ...
- 「查缺补漏」巩固你的RocketMQ知识体系
Windows安装部署 下载 地址:[https://www.apache.org/dyn/closer.cgi?path=rocketmq/4.5.2/rocketmq-all-4.5.2-bin- ...
- SpringSecurity权限管理系统实战—八、AOP 记录用户、异常日志
目录 SpringSecurity权限管理系统实战-一.项目简介和开发环境准备 SpringSecurity权限管理系统实战-二.日志.接口文档等实现 SpringSecurity权限管理系统实战-三 ...
- CSP-J2019 把8个同样的球放在同样的5个袋子里,允许有的袋子空着不放,问共有多少种不同的分法?
把8个同样的球放在同样的5个袋子里,允许有的袋子空着不放,问共有多少种不同的分法? 提示:如果8个球都放在一个袋子里,无论是放哪个袋子,都只算同一种分法. 解析: 把问题合成,先思索5个袋子都不空的状 ...
- Tugnsten Fabric-MPLS-三层转发
1.网络拓扑图如下: 2.场景:虚机1.1.1.3 ping 虚机3.3.3.3(两个虚机加入到虚拟路由器里面了,所以可以互通) 3.查看虚机1.1.1.3所对应的VRF: 4.其中41为mpls标签 ...
- Git仓库由HTTPS切换成ssh秘钥连接
Git关联远程仓库可以使用https协议或者ssh协议. [特点/优缺点] ssh: 一般使用22端口: 通过先在本地生成SSH密钥对再把公钥上传到服务器: 速度较慢点 https: 一般使用443端 ...
- 2020.5.24 第四篇 Scrum冲刺博客
Team:银河超级无敌舰队 Project:招新通 项目冲刺集合贴:链接 目录 一.每日站立会议 1.1 会议照片 1.2 项目完成情况 二.项目燃尽图 三.签入记录 3.1 代码/文档签入记录 3. ...