考研路茫茫——单词情结

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6853    Accepted Submission(s): 2383

Problem Description
背单词,始终是复习英语的重要环节。在荒废了3年大学生涯后,Lele也终于要开始背单词了。
一天,Lele在某本单词书上看到了一个根据词根来背单词的方法。比如"ab",放在单词前一般表示"相反,变坏,离去"等。

于是Lele想,如果背了N个词根,那这些词根到底会不会在单词里出现呢。更确切的描述是:长度不超过L,只由小写字母组成的,至少包含一个词根的单词,一共可能有多少个呢?这里就不考虑单词是否有实际意义。

比如一共有2个词根 aa 和 ab ,则可能存在104个长度不超过3的单词,分别为
(2个) aa,ab,
(26个)aaa,aab,aac...aaz,
(26个)aba,abb,abc...abz,
(25个)baa,caa,daa...zaa,
(25个)bab,cab,dab...zab。

这个只是很小的情况。而对于其他复杂点的情况,Lele实在是数不出来了,现在就请你帮帮他。

 
Input
本题目包含多组数据,请处理到文件结束。
每组数据占两行。
第一行有两个正整数N和L。(0<N<6,0<L<2^31)
第二行有N个词根,每个词根仅由小写字母组成,长度不超过5。两个词根中间用一个空格分隔开。
 
Output
对于每组数据,请在一行里输出一共可能的单词数目。
由于结果可能非常巨大,你只需要输出单词总数模2^64的值。
 
Sample Input
2 3
aa ab
1 2
a
 
Sample Output
104
52
 
Author
linle
 
Recommend
lcy

其实poj-2778的代码改一下就好了。。

求长度不超过L,只由小写字母组成的,至少包含一个词根的单词

用所有的情况减去一个也不包含的就好了

长度不超过L

在POJ 2778 得到的L*L的矩阵中,需要增加一维,第L+1列全部为1

就好了  自己写一下矩阵 就能看出来

emm。。我还是写写吧

发现了没有  增加一维后 其他位置没变  (最后是累加第一行)

增加一维后的第一行最后一个位置恰好是矩阵上一个次方 第一行各个位置的累加和 + 1  因为开始是矩阵右下角是1  所以多加了一个1

是的  就是这么巧妙

代码。。。看别人的吧  我写的有点吐血。。

代码是谁的我忘了。。。。不要打我。。。emm。。。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <cmath>
#define ll unsigned long long
using namespace std;
const int N = ;
const int SIGMA_SIZE = ;
struct Mat {
ll a[N][N];
}ori, res;
int Next[N][SIGMA_SIZE], fail[N], val[N], sz, n, L;
char str[N]; void init() {
sz = ;
memset(Next[], , sizeof(Next[]));
val[] = ;
} void insert(char *s) {
int u = , len = strlen(s);
for (int i = ; i < len; i++) {
int k = s[i] - 'a';
if (!Next[u][k]) {
memset(Next[sz], , sizeof(Next[sz]));
val[sz] = ;
Next[u][k] = sz++;
}
u = Next[u][k];
}
val[u] = ;
} void getFail() {
queue<int> Q;
fail[] = ;
for (int i = ; i < SIGMA_SIZE; i++)
if (Next[][i]) {
fail[Next[][i]] = ;
Q.push(Next[][i]);
}
while (!Q.empty()) {
int u = Q.front();
Q.pop();
if (val[fail[u]])
val[u] = ;
for (int i = ; i < SIGMA_SIZE; i++) {
if (!Next[u][i])
Next[u][i] = Next[fail[u]][i];
else {
fail[Next[u][i]] = Next[fail[u]][i];
Q.push(Next[u][i]);
}
}
}
} Mat multiply(const Mat &x, const Mat &y) {
Mat temp;
for (int i = ; i <= sz; i++)
for (int j = ; j <= sz; j++) {
temp.a[i][j] = ;
for (int k = ; k <= sz; k++)
temp.a[i][j] += x.a[i][k] * y.a[k][j];
}
return temp;
} void calc(int m) {
while (m) {
if (m & )
res = multiply(res, ori);
m >>= ;
ori = multiply(ori, ori);
}
} int main() {
while (scanf("%d%d", &n, &L) == ) {
init();
for (int i = ; i < n; i++) {
scanf("%s", str);
insert(str);
}
getFail();
for (int i = ; i <= sz; i++)
for (int j = ; j <= sz; j++)
res.a[i][j] = ori.a[i][j] = ;
for (int i = ; i <= sz; i++)
res.a[i][i] = ;
for (int i = ; i < sz; i++)
for (int j = ; j < SIGMA_SIZE; j++)
if (!val[Next[i][j]])
ori.a[i][Next[i][j]]++;
for (int i = ; i <= sz; i++)
ori.a[i][sz] = ;
calc(L);
ll ans = ;
for (int i = ; i <= sz; i++)
ans += res.a[][i];
ori.a[][] = ori.a[][] = ;
ori.a[][] = ;
ori.a[][] = ;
res.a[][] = ;
res.a[][] = res.a[][] = res.a[][] = ;
sz = ;
calc(L);
ll ans2 = res.a[][];
printf("%llu\n", ans2 - ans + );
}
return ;
}

考研路茫茫――单词情结 HDU - 2243(ac自动机 + 矩阵快速幂)的更多相关文章

  1. 考研路茫茫——单词情结 HDU - 2243 AC自动机 && 矩阵快速幂

    背单词,始终是复习英语的重要环节.在荒废了3年大学生涯后,Lele也终于要开始背单词了. 一天,Lele在某本单词书上看到了一个根据词根来背单词的方法.比如"ab",放在单词前一般 ...

  2. 考研路茫茫--单词情结 - HDU 2243(AC自动机+矩阵乘法)

    分析:与poj的2778差不多的,求出来所有的情况然后减去不包含的就行了,这次使用了一下kuangbin的那种自动机写法,确实还不错,因为尤是在建立矩阵的时候更加方便.   代码如下: ======= ...

  3. POJ - 2778 ~ HDU - 2243 AC自动机+矩阵快速幂

    这两题属于AC自动机的第二种套路通过矩阵快速幂求方案数. 题意:给m个病毒字符串,问长度为n的DNA片段有多少种没有包含病毒串的. 根据AC自动机的tire图,我们可以获得一个可达矩阵. 关于这题的t ...

  4. hdu 2243 考研路茫茫——单词情结(AC自动+矩阵)

    考研路茫茫——单词情结 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  5. HDU 2243 考研路茫茫——单词情结(AC自动机+矩阵)

    考研路茫茫——单词情结 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  6. hdu 2243 考研路茫茫——单词情结 AC自动机 矩阵幂次求和

    题目链接 题意 给定\(N\)个词根,每个长度不超过\(5\). 问长度不超过\(L(L\lt 2^{31})\),只由小写字母组成的,至少包含一个词根的单词,一共可能有多少个? 思路 状态(AC自动 ...

  7. HDU 2243 考研路茫茫——单词情结

    考研路茫茫——单词情结 Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID ...

  8. HDU 2243 考研路茫茫——单词情结 求长度小于等于L的通路总数的方法

    http://acm.hdu.edu.cn/showproblem.php?pid=2243 这是一题AC自动机 + 矩阵快速幂的题目, 首先知道总答案应该是26^1 + 26^2 + 26^3 .. ...

  9. hdu_2243_考研路茫茫——单词情结(AC自动机+矩阵)

    题目链接:hdu_2243_考研路茫茫——单词情结 题意: 让你求包含这些模式串并且长度不小于L的单词种类 题解: 这题是poj2788的升级版,没做过的强烈建议先做那题. 我们用poj2778的方法 ...

随机推荐

  1. CF 1093 E. Intersection of Permutations

    E. Intersection of Permutations 链接 题意: 给定两个序列,询问第一个排列的[l1,r1]和第二个排列[l2,r2]中有多少个共同的数,支持在第二个排列中交换两个数. ...

  2. macOS 10.14 Mojave 开发环境配置Apache多PHP版本

    第1部分:macOS 10.14 Mojave Web开发环境 在macOS上开发Web应用程序真是一种乐趣.设置开发环境有很多选择,包括广受欢迎的MAMP Pro,它在Apache,PHP和MySQ ...

  3. 「日常训练」Magic Stones(CodeForces-1110E)

    题意 给定两个数组c和t,可以对c数组中的任何元素变换\(c_i\)​成\(c_{i+1}+c_{i-1}-c_i\)​,问c数组在若干次变换后能否变换成t数组. 分析 这种魔法题目我是同样的没做过. ...

  4. 测试基础-http协议(转)

    HTTP的特性 HTTP构建于TCP/IP协议之上,默认端口号是80 HTTP是无连接无状态的 HTTP报文 请求报文 HTTP 协议是以 ASCII 码传输,建立在 TCP/IP 协议之上的应用层规 ...

  5. 【Linux 运维】Linux 目录

    目录 [Linux 运维]Centos7初始化网络配置 [Linux 运维]linux系统修改主机名 [Linux 运维]linux系统关机.重启.注销命令 [Linux 运维]linux系统查看版本 ...

  6. JAVA学习笔记--策略设计模式与适配器模式

    一.策略设计模式 创建一个能够根据所传递对象的不同而具有不同行为的方法被称为策略设计模式:这类方法包含所要执行的算法中固定不变的部分,而“策略”包含变化的部分.策略就是传递进去的参数对象,它包含要执行 ...

  7. C语言—单链表

    单链表操作:读取,插入和删除 #include "stdafx.h" #include <string.h> #include <stdio.h> #inc ...

  8. Django 使用 Celery 实现异步任务

    对于网站来说,给用户一个较好的体验是很重要的事情,其中最重要的指标就是网站的浏览速度.因此服务端要从各个方面对网站性能进行优化,比如可采用CDN加载一些公共静态文件,如js和css:合并css或者js ...

  9. python3【基础】-list&tuple

    一.list概述 list (列表)是python中最常用的数据类型之一,通过列表可以对数据实现最方便的存储,修改等操作.在python3中,list支持如下方法: Help on class lis ...

  10. Scrum立会报告+燃尽图(十月二十四日总第十五次)

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2284 项目地址:https://git.coding.net/zhang ...