bzoj2301-Problem b
题意
\(T\le 5\times 10^4\) 次询问,每次询问 \(a,b,c,d,k\le 5\times 10^4\),求
\]
分析
重新学了一次(可能跟第一次学没什么区别)莫比乌斯反演相关,这题还是很简单的。问题可以转化为求四次
\]
下面过程中设 \(n\le m\) 。
\sum _{i=1}^n\sum _{j=1}^m[gcd(i,j)=k]&=\sum _{i=1}^n\sum _{j=1}^m\sum _{k|i,k|j}\sum _{d|\frac{i}{k},d|\frac{j}{k}}\mu(d) \\
&=\sum _{d=1}^n\sum _{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum _{j=1}^{\lfloor\frac{m}{k}\rfloor}\mu (d) \\
&=\sum _{d=1}^n\mu (d) \lfloor\frac{\lfloor\frac{n}{k}\rfloor}{d}\rfloor \lfloor\frac{\lfloor\frac{m}{k}\rfloor}{d}\rfloor
\end{aligned}
\]
注意到 \(\lfloor\frac{n}{d}\rfloor\) 这种形式只有 \(2\sqrt n\) 种取值(对于 \(d\le \sqrt n\) ,显然;对于 \(d>\sqrt n\) ,\(\lfloor\frac{n}{d}\rfloor\le \sqrt n\) ,也最多只有 \(\sqrt n\) 种),所以 \(\lfloor\frac{\lfloor\frac{n}{k}\rfloor}{d}\rfloor \lfloor\frac{\lfloor\frac{m}{k}\rfloor}{d}\rfloor\) 最多只有 \(4\sqrt n\) 种取值,跳一下即可做到单次询问 \(O(\sqrt n)\) ,只要预处理 \(\mu\) 函数的前缀和即可。
代码
#include<bits/stdc++.h>
using namespace std;
inline int read() {
int x=0,f=1;
char c=getchar_unlocked();
for (;!isdigit(c);c=getchar_unlocked()) if (c=='-') f=-1;
for (;isdigit(c);c=getchar_unlocked()) x=x*10+c-'0';
return x*f;
}
typedef long long giant;
const int maxn=5e4+1;
bool np[maxn];
int p[maxn],mu[maxn],ps=0;
giant calc(int n,int m) {
giant ret=0;
if (n>m) swap(n,m);
for (int i=1,j;i<=n;i=j+1) {
j=min(n/(n/i),m/(m/i));
ret+=(giant)(mu[j]-mu[i-1])*(n/i)*(m/i);
}
return ret;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
#endif
mu[1]=1;
for (int i=2;i<maxn;++i) {
if (!np[i]) p[++ps]=i,mu[i]=-1;
for (int j=1;j<=ps && i*p[j]<maxn;++j) {
np[i*p[j]]=true;
if (i%p[j]==0) break;
mu[i*p[j]]=-mu[i];
}
}
for (int i=2;i<maxn;++i) mu[i]+=mu[i-1];
int T=read();
while (T--) {
int a=read(),b=read(),c=read(),d=read(),k=read();
a=(a-1)/k,b/=k,c=(c-1)/k,d/=k;
giant ans=(calc(b,d)-calc(b,c))-(calc(a,d)-calc(a,c));
printf("%lld\n",ans);
}
return 0;
}
bzoj2301-Problem b的更多相关文章
- [HAOI2011][bzoj2301] Problem b [莫比乌斯反演+容斥原理+分块前缀和优化]
题面: 传送门 有洛谷就尽量放洛谷链接呗,界面友好一点 思路: 和HDU1695比较像,但是这一回有50000组数据,直接莫比乌斯反演慢慢加的话会T 先解决一个前置问题:怎么处理a,c不是1的情况? ...
- [bzoj2301]Problem b莫比乌斯反演+分块优化
题意: $\sum\limits_{\begin{array}{*{20}{c}}{a < = x < = b}\\{c < = y < = d}\end{array}} {\ ...
- 【BZOJ2301】【HAOI2011】Problem B(莫比乌斯反演)
[BZOJ2301][HAOI2011]Problem B(莫比乌斯反演) 题面 Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y ...
- 【bzoj2301】 HAOI2011—Problem b
http://www.lydsy.com/JudgeOnline/problem.php?id=2301 (题目链接) 题意 给出${a,b,c,d,k}$,${n}$组询问,求$${\sum_{i= ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- BZOJ2301:[HAOI2011]Problem b——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=2301 https://www.luogu.org/problemnew/show/P2522 对于给 ...
- [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演
对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...
- Bzoj-2301 [HAOI2011]Problem b 容斥原理,Mobius反演,分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 题意:多次询问,求有多少对数满足 gcd(x,y)=k, a<=x<=b ...
- 【数论】【莫比乌斯反演】【线性筛】bzoj2301 [HAOI2011]Problem b
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 100%的数据满足:1≤n≤50000,1≤a≤b ...
- 【BZOJ2301】【HAOI2011】Problem b [莫比乌斯反演]
Problem b Time Limit: 50 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description 对于给出的n个询问,每次 ...
随机推荐
- 2016-2017-20155329 《Java程序设计》第十周学习总结
学号 2016-2017-20155329 <Java程序设计>第十周学习总结 教材学习内容总结 学习目标 了解计算机网络基础 OSI分层(7层):物理层.数据链路层.网络层.传输层.会话 ...
- js想不通的地方
1.js函数的function() 为什么能接受那么多参数,这些参数的名字顺序必须固定还是怎么? 怎么知道调用的时候会发送该参数过去?内部原理?手动传输? 2.js对象,json对象,java对象怎么 ...
- day 10 字典dict
添加 xxx[新的key] = value 删除 del xx[key] 修改 xxx[已存在的key] = new_value 查询 xxx.get(key) 1. dict 字典 #### lis ...
- (转) PHP 开发者该知道的 5 个 Composer 小技巧
1. 仅更新单个库 只想更新某个特定的库,不想更新它的所有依赖,很简单: composer update foo/bar 此外,这个技巧还可以用来解决“警告信息问题”.你一定见过这样的警告信息: Wa ...
- L013-linux基础正则表达式手把手实战讲解小节
L013-linux基础正则表达式手把手实战讲解小节 这么一看又有10天没更新博客了,最近也一直在学就是时间比较闲散,再加上做上次老师留的十多道题,所以时间比较紧张,本来做完题准备直接先看L014讲解 ...
- Lambada表达式的作用
Lambda函数的用处 假设你设计了一个地址簿的类.现在你要提供函数查询这个地址簿,可能根据姓名查询,可能根据地址查询,还有可能两者结合.要是你为这些情况都写个函数,那么你一定就跪了.所以你应该提 ...
- 搞懂.NET Framework 历史版本(2017年)
最近被.NET平台各种名词.以及各种版本弄得有些疑惑,开发和部署,对于开发平台版本选择是个基本问题,因此,花了些时间,学习汇总了有关.NET版本演进的历史. .NET简介 这个平台相信我们都知道,不过 ...
- python常用模块详解2
序列化模块补充: 1.json格式的限制,json格式的key必须是字符串数据类型 2.json格式的字符串必须是"" 如果数字是key,那么dump之后会强转成字符串数据类型 i ...
- 时序数据库InfluxDB
在系统服务部署过后,线上运行服务的稳定性是系统好坏的重要体现,监控系统状态至关重要,经过调研了解,时序数据库influxDB在此方面表现优异. influxDB介绍 时间序列数据是以时间字段为每行数据 ...
- 【转】: 塞尔达组在GDC2017演讲的文字翻译:显示的力量
塞尔达系列推出新作的时候,美术风格都有明显变化.本作的风格比起写实,笔触轻快变化幅度大是其特征.2011年公开的技术演示中,画面风格要更加写实.最终版则更接近于卡通.5年里到底发生了什么呢? ▲2 ...