题意

\(T\le 5\times 10^4\) 次询问,每次询问 \(a,b,c,d,k\le 5\times 10^4\),求

\[\sum _{i=a}^b\sum _{j=c}^d[gcd(i,j)=k]
\]

分析

重新学了一次(可能跟第一次学没什么区别)莫比乌斯反演相关,这题还是很简单的。问题可以转化为求四次

\[\sum _{i=1}^n\sum _{j=1}^m[gcd(i,j)=1]
\]

下面过程中设 \(n\le m\) 。

\[\begin{aligned}
\sum _{i=1}^n\sum _{j=1}^m[gcd(i,j)=k]&=\sum _{i=1}^n\sum _{j=1}^m\sum _{k|i,k|j}\sum _{d|\frac{i}{k},d|\frac{j}{k}}\mu(d) \\
&=\sum _{d=1}^n\sum _{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum _{j=1}^{\lfloor\frac{m}{k}\rfloor}\mu (d) \\
&=\sum _{d=1}^n\mu (d) \lfloor\frac{\lfloor\frac{n}{k}\rfloor}{d}\rfloor \lfloor\frac{\lfloor\frac{m}{k}\rfloor}{d}\rfloor
\end{aligned}
\]

注意到 \(\lfloor\frac{n}{d}\rfloor\) 这种形式只有 \(2\sqrt n\) 种取值(对于 \(d\le \sqrt n\) ,显然;对于 \(d>\sqrt n\) ,\(\lfloor\frac{n}{d}\rfloor\le \sqrt n\) ,也最多只有 \(\sqrt n\) 种),所以 \(\lfloor\frac{\lfloor\frac{n}{k}\rfloor}{d}\rfloor \lfloor\frac{\lfloor\frac{m}{k}\rfloor}{d}\rfloor\) 最多只有 \(4\sqrt n\) 种取值,跳一下即可做到单次询问 \(O(\sqrt n)\) ,只要预处理 \(\mu\) 函数的前缀和即可。

代码

#include<bits/stdc++.h>
using namespace std;
inline int read() {
int x=0,f=1;
char c=getchar_unlocked();
for (;!isdigit(c);c=getchar_unlocked()) if (c=='-') f=-1;
for (;isdigit(c);c=getchar_unlocked()) x=x*10+c-'0';
return x*f;
}
typedef long long giant;
const int maxn=5e4+1;
bool np[maxn];
int p[maxn],mu[maxn],ps=0;
giant calc(int n,int m) {
giant ret=0;
if (n>m) swap(n,m);
for (int i=1,j;i<=n;i=j+1) {
j=min(n/(n/i),m/(m/i));
ret+=(giant)(mu[j]-mu[i-1])*(n/i)*(m/i);
}
return ret;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
#endif
mu[1]=1;
for (int i=2;i<maxn;++i) {
if (!np[i]) p[++ps]=i,mu[i]=-1;
for (int j=1;j<=ps && i*p[j]<maxn;++j) {
np[i*p[j]]=true;
if (i%p[j]==0) break;
mu[i*p[j]]=-mu[i];
}
}
for (int i=2;i<maxn;++i) mu[i]+=mu[i-1];
int T=read();
while (T--) {
int a=read(),b=read(),c=read(),d=read(),k=read();
a=(a-1)/k,b/=k,c=(c-1)/k,d/=k;
giant ans=(calc(b,d)-calc(b,c))-(calc(a,d)-calc(a,c));
printf("%lld\n",ans);
}
return 0;
}

bzoj2301-Problem b的更多相关文章

  1. [HAOI2011][bzoj2301] Problem b [莫比乌斯反演+容斥原理+分块前缀和优化]

    题面: 传送门 有洛谷就尽量放洛谷链接呗,界面友好一点 思路: 和HDU1695比较像,但是这一回有50000组数据,直接莫比乌斯反演慢慢加的话会T 先解决一个前置问题:怎么处理a,c不是1的情况? ...

  2. [bzoj2301]Problem b莫比乌斯反演+分块优化

    题意: $\sum\limits_{\begin{array}{*{20}{c}}{a < = x < = b}\\{c < = y < = d}\end{array}} {\ ...

  3. 【BZOJ2301】【HAOI2011】Problem B(莫比乌斯反演)

    [BZOJ2301][HAOI2011]Problem B(莫比乌斯反演) 题面 Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y ...

  4. 【bzoj2301】 HAOI2011—Problem b

    http://www.lydsy.com/JudgeOnline/problem.php?id=2301 (题目链接) 题意 给出${a,b,c,d,k}$,${n}$组询问,求$${\sum_{i= ...

  5. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  6. BZOJ2301:[HAOI2011]Problem b——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=2301 https://www.luogu.org/problemnew/show/P2522 对于给 ...

  7. [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演

    对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...

  8. Bzoj-2301 [HAOI2011]Problem b 容斥原理,Mobius反演,分块

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 题意:多次询问,求有多少对数满足 gcd(x,y)=k, a<=x<=b ...

  9. 【数论】【莫比乌斯反演】【线性筛】bzoj2301 [HAOI2011]Problem b

    对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 100%的数据满足:1≤n≤50000,1≤a≤b ...

  10. 【BZOJ2301】【HAOI2011】Problem b [莫比乌斯反演]

    Problem b Time Limit: 50 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 对于给出的n个询问,每次 ...

随机推荐

  1. 20155304 2016-2017-2 《Java程序设计》第八周学习总结

    20155304 2016-2017-2 <Java程序设计>第八周学习总结 教材学习内容总结 NIO NIO使用频道来衔接数据节点,在处理数据时,NIO可以让你设定缓冲区容量,在缓冲区中 ...

  2. 4361: isn

    4361: isn https://lydsy.com/JudgeOnline/problem.php?id=4361 分析: dp+容斥. 首先计算出每个长度有多少种子序列是非降的.这一步可以$n^ ...

  3. 2018.10.17校内模拟赛:T2神光

    题面:pdf 首先排序,二分,然后怎么判定是否可行. 最简单的思路是,dp[i][j][k],到第i个,用了j次红光,k次绿光,前i个点都选上了,是否可行.然后转移就行. 然后考试的时候就想到这了,往 ...

  4. MSP430的JTAG接口和BSW接口

    1.JTAG口,JTAG引脚如下定义:  单片机TCK——测试时钟输入,接仿真器7脚  单片机TDI——测试数据输入,接仿真器2脚  单片机TDO——测试数据输出,接仿真器1脚  单片机TMS——测试 ...

  5. idea 单元测试 mybatis spring-test 异常: org.apache.ibatis.binding.BindingException: Invalid bound statement (not found)

    因为在idea中必须在test下才能进行单元测试,所以进行单元测试时,ssm的项目会因为找不到resourece中的配置文件而报错 这里 org.apache.ibatis.binding.Bindi ...

  6. 基于Cocos2d-x-1.0.1的飞机大战游戏开发实例(下)

    在飞机大战游戏开发中遇到的问题和解决方法: 1.在添加菜单时,我要添加一个有背景的菜单,需要在菜单pMenu中添加一个图片精灵,结果编译过了但是运行出错,如下图: 查了很多资料,调试了很长时间,整个人 ...

  7. HCIE理论-IPV6

    ipv4与ipv6的对比 IPv4 :32 bit 点分十进制 192.168.1.1 2^32=42.9亿 ipv4地址不足IPv6 :128 bit 十六进制 2^128 冒号分十六进制ipv4 ...

  8. http-equiv=mobile-agent说明

    Meta声明的格式:<meta http-equiv=”mobile-agent” content=”format=[wml|xhtml|html5]; url=url”> 比如: < ...

  9. JPA error org.hibernate.AnnotationException: No identifier specified for entity

    错误:org.hibernate.AnnotationException: No identifier specified for entity 原因:JPA所使用的Entity需要标注@Id,在引用 ...

  10. 兰亭集势收购美国社交购物网站Ador,收购的是人才

    1 月 6 日消息,外贸电商公司兰亭集势(LightInTheBox)今日宣布,已经完成对美国社交电商网站 Ador 公司的收购.Ador 公司总部位于西雅图.这项资产收购通过现金完成,但未披露交易金 ...