【bzoj4305】数列的GCD 组合数学+容斥原理
题目描述
输入
输出
样例输入
3 3 3
3 3 3
样例输出
7 1 0
题解
数学+容斥
老套路了,先处理出 $\gcd$ 为 $d$ 的倍数的方案数:
预处理出 $\{a[n]\}$ 中 $d$ 的倍数的数目 $c[d]$ ,那么 $d$ 的倍数中需要有 $n-k$ 个与 $\{a[n]\}$ 相同,有 $C_{c[d]}^{n-k}$ 种方案。
其余 $c[d]-n+k$ 个 $d$ 的倍数每个都有 $\lfloor\frac md\rfloor-1$ 种方案,因为 $d$ 的倍数总共有 $\lfloor\frac md\rfloor$ 个,减去不能等于原序列的1个。
剩下 $n-c[d]$ 个非 $d$ 的倍数的每个有 $\lfloor\frac md\rfloor$ 种方案。
因此 $\gcd$ 为 $d$ 的倍数的方案数就是 $C_{c[d]}^{n-k}\times(\lfloor\frac md\rfloor -1)^{c[d]-n+k}\times(\lfloor\frac md\rfloor)^{n-c[d]}$ 。
然后这个答案需要容斥一下,减去 $d$ 的2以上倍数的答案。
即 $ans[d]=C_{c[d]}^{n-k}\times(\lfloor\frac md\rfloor -1)^{c[d]-n+k}\times(\lfloor\frac md\rfloor)^{n-c[d]}-\sum\limits_{i=2}^{\lfloor\frac md\rfloor}ans[i\times d]$ 。
从大到小循环 $d$ ,后面的 $ans$ 已经求出,直接减掉即可,不需要莫比乌斯反演。
由于数的范围只有 $m=300000$ ,因此每一步都可以调和级数预处理。
时间复杂度 $O(n\log n)$
#include <cstdio>
#define N 300010
#define mod 1000000007
typedef long long ll;
int a[N] , v[N] , c[N];
ll fac[N] , ans[N];
inline ll pow(ll x , int y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
int main()
{
int n , m , k , i , j;
scanf("%d%d%d" , &n , &m , &k) , k = n - k;
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i]) , v[a[i]] ++ ;
for(i = 1 ; i <= m ; i ++ )
for(j = 1 ; i * j <= m ; j ++ )
c[i] += v[i * j];
fac[0] = 1;
for(i = 1 ; i <= n ; i ++ ) fac[i] = fac[i - 1] * i % mod;
for(i = m ; i ; i -- )
{
if(c[i] >= k) ans[i] = fac[c[i]] * pow(fac[k] , mod - 2) % mod * pow(fac[c[i] - k] , mod - 2) % mod * pow(m / i - 1 , c[i] - k) % mod * pow(m / i , n - c[i]) % mod;
for(j = 2 ; i * j <= m ; j ++ ) ans[i] = (ans[i] - ans[i * j] + mod) % mod;
}
for(i = 1 ; i < m ; i ++ ) printf("%lld " , ans[i]);
printf("%lld\n" , ans[m]);
return 0;
}
【bzoj4305】数列的GCD 组合数学+容斥原理的更多相关文章
- [BZOJ4305]数列的GCD:莫比乌斯反演+组合数学
分析 一开始想的是对恰好\(k\)个位置容斥,结果发现对\(\gcd\)有些无从下手,想了想发现自己又sb了. 考虑对\(\gcd\)进行容斥处理,弱化条件,现在我们要求的是使\(\gcd\)是\(d ...
- bzoj4305: 数列的GCD
要求k个与原序列中的数不同,就是要求(n-k)个相同,令K=n-k 然后cnt[i]表示序列a中i的倍数的个数 f[i]表示gcd为i的倍数的方案数 f[i]=C(cnt[i],K)*(m/i-1)^ ...
- HDU.1796 How many integers can you find ( 组合数学 容斥原理 二进制枚举)
HDU.1796 How many integers can you find ( 组合数学 容斥原理 二进制枚举) 题意分析 求在[1,n-1]中,m个整数的倍数共有多少个 与 UVA.10325 ...
- UVA.10325 The Lottery (组合数学 容斥原理 二进制枚举)
UVA.10325 The Lottery (组合数学 容斥原理) 题意分析 首先给出一个数n,然后给出m个数字(m<=15),在[1-n]之间,依次删除给出m个数字的倍数,求最后在[1-n]之 ...
- BZOJ 4305: 数列的GCD( 数论 )
对于d, 记{ai}中是d的倍数的数的个数为c, 那么有: 直接计算即可,复杂度O(NlogN+MlogM) --------------------------------------------- ...
- BZOJ_3129_[Sdoi2013]方程_组合数学+容斥原理
BZOJ_3129_[Sdoi2013]方程_组合数学+容斥原理 Description 给定方程 X1+X2+. +Xn=M 我们对第l..N1个变量进行一些限制: Xl < = A ...
- UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举)
UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举) 题意分析 给出n*m的矩形格子,给出k个点,每个格子里面可以放一个点.现在要求格子的最外围一圈的每行每列,至少要放一个 ...
- 【BZOJ 4305】 4305: 数列的GCD (数论)
4305: 数列的GCD Description 给出一个长度为N的数列{a[n]},1<=a[i]<=M(1<=i<=N). 现在问题是,对于1到M的每个整数d,有多少个不 ...
- bzoj 4305 数列的GCD
LINK:数列的GCD 题意: 给出一个长度为N的数列{a[n]},1<=a[i]<=M(1<=i<=N). 现在问题是,对于1到M的每个整数d,有多少个不同的数列b[1], ...
随机推荐
- 20155339 2016-2017-2《Java程序设计》课程总结
20155339 2016-2017-2<Java程序设计>课程总结 每周作业链接汇总 第一篇随笔:简单的叙述了一下自己对自己的专业以及对师生关系的期望. 平措卓玛的第二次随笔--论技能与 ...
- 使用Java Api 对HBase进行简单操作
/** * 功能:测试Hbase基本的增删改查操作 * Created by liuhuichao on 2016/12/5. */ public class HbaseCRUDTest { publ ...
- Linux无法su到普通用户
无法通过su命令登录到普通用户 [root@linux-server ~]# su - tomcat su: cannot set user id: Resource temporarily unav ...
- spark submit参数及调优(转载)
spark submit参数介绍 你可以通过spark-submit --help或者spark-shell --help来查看这些参数. 使用格式: ./bin/spark-submit \ -- ...
- 微软office web apps 服务器搭建之在线文档预览(二)
上一篇文章已经介绍了整个安装过程了.只要在浏览器中输入文档转换server的ip,会自动跳转,出现如下页面. 那么就可以实现本地文档预览了,你可以试试.(注意:是本地哦,路径不要写错,类似“\\fil ...
- Linux 安装Redis<集群版>(使用Mac远程访问)
阅读本文需要先阅读安装Redis<准备> 一 架构细节 所有的redis节点彼此互联(PING-PONG机制) 内部使用二进制协议优化传输速度和带宽 节点的fail是通过集群中超过半数的节 ...
- vue2.0做移动端开发用到的相关插件和经验总结
最近一直在做移动端微信公众号项目的开发,也是我首次用vue来开发移动端项目,前期积累的移动端开发经验较少.经过这个项目的锻炼,加深了对vue相关知识点的理解和运用,同时,在项目中所涉及到的微信api( ...
- CSP201604-2:俄罗斯方块
引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...
- PS1修改xshell命令行样式
linux 其他知识目录 在/root/.bashrc下加入如下代码. export PS1='\n\e[1;37m[\e[m\e[1;32m\u\e[m\e[1;33m@\e[m\e[1;35m\H ...
- c# byte转docx
问题情境: docx文件放进resource中,再用程序读出来的时候是二进制数组. 解决办法: public string ByteConvertWord(byte[] data, string fi ...