Portal --> qwq(貌似是CodeForces Gym 100228 (ECNA2003) - I)

Description

  对于长度为 \(n\) 的序列 \(A\) ,定义其逆序图 \(G\) 如下:无向图 \(G\)有\(n\) 个节点,编号为 \(0..n-1\) ;对于任意的$ 0≤i<j≤n−1$ ,如果有 \(a[i]>a[j]\),那么 \(G\)中存在一条 \(i\)和 \(j\)之间的边。例如:\(A=\{1,3,4,0,2\}, G=\{(0,3),(1,3),(1,4),(2,3),(2,4)\}\)

​  定义独立集 \(S\):对于\(∀x∈S,y∈S\) ,都不存在一条边$ (x,y)$

​  定义覆盖集 \(S\) :对于\(∀x∉S\),至少存在一条边$ (x,y)$,使得 \(y∈S\)

​  现在给你一个逆序图 \(G\)(保证合法),求$ G$ 有多少个点集既是独立集又是覆盖集。

​  数据范围:\(1<=n<=1000,0<=m<=n*(n-1)/2\)

  

Solution

​  首先。。图的独立集是。。一个np问题==那所以直接在图上面搞什么的显然是不理智的qwq

  那所以。。要好好利用逆序图这个条件

  把独立集和覆盖集放在回原来的序列里面来看,其实就是:\(S\)中的元素无法构成逆序对(也就是说。。必须递增),并且任意非\(S\)元素均能与\(S\)中至少一个元素构成逆序对

​  所以我们其实是要找有多少个递增的子序列满足第二个条件

​  这个要怎么找呢。。考虑dp,记\(f[i]\)表示以\(i\)结尾的满足条件的子序列有多少个,那么考虑转移,\(f[i]\)能够转移到\(f[j]\),当且仅当满足\(a[i]<a[j]\)并且\(i\)和\(j\)中间的这段都要能和子序列中的至少一个元素构成逆序对,也就是要么小于\(a[i]\)要么大于\(a[j]\),然后因为如果小于\(a[i]\)的话不满足第一个转移条件,所以\(i\)到\(j\)之间的,除了之前能够转移的位置,其他肯定都是小于\(a[i]\)的不用管,我们只要看\(>a[i]\)中最大的那个是不是\(>a[j]\)就好了,具体实现其实很简单,因为这些需要单独考虑的位置肯定是之前遇到的能够转移的位置,所以我们开多一个\(tmp\)记录一下最大值即可

​  至于这个序列要怎么还原,因为只有大于和小于关系,所以。。我们钦定一下这个序列是一个\(1\)到\(n\)的排列,然后我们可以通过逆序对得到每个数前面比它大的有多少个,后面比它大的有多少个,那就可以得到每个数的具体值了(为了方便统计答案我们可以将\(a[n+1]\)钦定成一个很大的数然后计算到\(n+1\)位,答案就是\(f[n+1]\))

  

​  代码大概长这个样子

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int N=1010;
struct Rec{
int x,y;
}rec[N*(N-1)/2];
int a[N],cnt[N];
ll f[N];
int n,m,ans;
void dp(){
int tmp;
f[0]=1;
for (int i=0;i<=n;++i){
tmp=n+2;
for (int j=i+1;j<=n+1;++j){
if (a[j]<a[i]||a[j]>=tmp) continue;
f[j]+=f[i];
tmp=a[j];
}
}
} int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d%d",&n,&m);
for (int i=1;i<=n;++i) cnt[i]=n-i;
for (int i=1;i<=m;++i){
scanf("%d%d",&rec[i].x,&rec[i].y);
++rec[i].x; ++rec[i].y;
if (rec[i].x>rec[i].y) swap(rec[i].x,rec[i].y);
++cnt[rec[i].y]; --cnt[rec[i].x];
}
for (int i=1;i<=n;++i) a[i]=n-cnt[i];
a[n+1]=n+1;
dp();
printf("%d\n",f[n+1]);
}

【CF Gym100228】Graph of Inversions的更多相关文章

  1. 【CF#338D】GCD Table

    [题目描述] 有一张N,M<=10^12的表格,i行j列的元素是gcd(i,j) 读入一个长度不超过10^4,元素不超过10^12的序列a[1..k],问是否在某一行中出现过 [题解] 要保证g ...

  2. 【CF#303D】Rotatable Number

    [题目描述] Bike是一位机智的少年,非常喜欢数学.他受到142857的启发,发明了一种叫做“循环数”的数. 如你所见,142857是一个神奇的数字,因为它的所有循环排列能由它乘以1,2,...,6 ...

  3. 【CF 463F】Escape Through Leaf

    题意 给你一棵 \(n\) 个点的树,每个节点有两个权值 \(a_i,b_i\). 从一个点 \(u\) 可以跳到以其为根的子树内的任意一点 \(v\)(不能跳到 \(u\) 自己),代价是 \(a_ ...

  4. 【CF 453A】 A. Little Pony and Expected Maximum(期望、快速幂)

    A. Little Pony and Expected Maximum time limit per test 1 second memory limit per test 256 megabytes ...

  5. 【CF 585E】 E. Present for Vitalik the Philatelist

    E. Present for Vitalik the Philatelist time limit per test 5 seconds memory limit per test 256 megab ...

  6. 【35.20%】【CF 706D】Vasiliy's Multiset

    time limit per test 4 seconds memory limit per test 256 megabytes input standard input output standa ...

  7. 【26.8%】【CF 46D】Parking Lot

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  8. 【31.42%】【CF 714A】Meeting of Old Friends

    time limit per test 1 second memory limit per test 256 megabytes input standard input output standar ...

  9. 【31.95%】【CF 714B】Filya and Homework

    time limit per test 1 second memory limit per test 256 megabytes input standard input output standar ...

随机推荐

  1. C# TTS-文本转语音

    System.Speech 命名空间包含支持语音识别的类型,你可以从Visual Studio很方便的添加相关组件的引用. System.Speech相关介绍:https://msdn.microso ...

  2. VIN码识别/车架号识别独家支持云识别

    VIN码(车架号)对于懂车的人来说并不陌生,不要小看这一串字符,从VIN码中可以读懂车辆的生产厂家.年代.车型.车身型式及代码.发动机代码及组装地点等信息. 一辆汽车的VIN码也是车辆的唯一身份证明, ...

  3. 第六章P2P技术及应用

    第六章P2P技术及应用 P2P技术在我们日常生活中非常实用,例如我们常用的QQ.PPLive.BitTorrent就是基于P2P技术研发.下面将本章中的重点内容进行归纳. 文章中的Why表示产生的背景 ...

  4. python的pip升级问题

    近来由于pip升级为10.0.1了,导致使用pip命令报错,使用过很多方法,最终找到一种相对靠谱的方法,一下是步骤: 进入https://pypi.python.org/pypi/pip 下载pip- ...

  5. json_encode替代函数

    <?php   function jsonEncode($var) {     if (function_exists('json_encode')) {         return json ...

  6. Python Web部署方式全汇总

    学过PHP的都了解,php的正式环境部署非常简单,改几个文件就OK,用FastCgi方式也是分分钟的事情.相比起来,Python在web应用上的部署就繁杂的多,主要是工具繁多,主流服务器支持不足. 在 ...

  7. HDU-1053:Advanced Fruits(LCS+路径保存)

    链接:HDU-1053:Advanced Fruits 题意:将两个字符串合成一个串,不改变原串的相对顺序,可将相同字母合成一个,求合成后最短的字符串. 题解:LCS有三种状态转移方式,将每个点的状态 ...

  8. cinder创建volume的流程-简单梳理

    1. cinder-api接收到创建的请求,入口:cinder.api.v2.volumes.VolumeController#create,该方法主要负责一些参数的重新封装和校验,然后调用cinde ...

  9. MySQL Proxy和 Amoeba 工作机制浅析

    MySQL Proxy处于客户端应用程序和MySQL服务器之间,通过截断.改变并转发客户端和后端数据库之间的通信来实现其功能,这和WinGate 之类的网络代理服务器的基本思想是一样的.代理服务器是和 ...

  10. Python 招聘信息爬取及可视化

    自学python的大四狗发现校招招python的屈指可数,全是C++.Java.PHP,但看了下社招岗位还是有的.于是为了更加确定有多少可能找到工作,就用python写了个爬虫爬取招聘信息,数据处理, ...