【UOJ#79】一般图最大匹配(带花树)
【UOJ#79】一般图最大匹配(带花树)
题面
题解
带花树模板题
关于带花树的详细内容
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 555
#define MAXL 255555
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next;}e[MAXL];
int h[MAX],cnt=1;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int match[MAX],pre[MAX],f[MAX],vis[MAX],tim,dfn[MAX];
int n,m,ans;
int getf(int x){return x==f[x]?x:f[x]=getf(f[x]);}
int lca(int u,int v)
{
++tim;u=getf(u);v=getf(v);
while(dfn[u]!=tim)
{
dfn[u]=tim;
u=getf(pre[match[u]]);
if(v)swap(u,v);
}
return u;
}
queue<int> Q;
void Blossom(int x,int y,int w)
{
while(getf(x)!=w)
{
pre[x]=y,y=match[x];
if(vis[y]==2)vis[y]=1,Q.push(y);
if(getf(x)==x)f[x]=w;
if(getf(y)==y)f[y]=w;
x=pre[y];
}
}
bool Aug(int S)
{
for(int i=1;i<=n;++i)f[i]=i,vis[i]=pre[i]=0;
while(!Q.empty())Q.pop();Q.push(S);vis[S]=1;
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(getf(u)==getf(v)||vis[v]==2)continue;
if(!vis[v])
{
vis[v]=2;pre[v]=u;
if(!match[v])
{
for(int x=v,lst;x;x=lst)
lst=match[pre[x]],match[x]=pre[x],match[pre[x]]=x;
return true;
}
vis[match[v]]=1,Q.push(match[v]);
}
else
{
int w=lca(u,v);
Blossom(u,v,w);
Blossom(v,u,w);
}
}
}
return false;
}
int main()
{
n=read();m=read();
for(int i=1;i<=m;++i)
{
int u=read(),v=read();
Add(u,v);Add(v,u);
}
for(int i=1;i<=n;++i)if(!match[i])ans+=Aug(i);
printf("%d\n",ans);
for(int i=1;i<=n;++i)printf("%d ",match[i]);puts("");
return 0;
}
【UOJ#79】一般图最大匹配(带花树)的更多相关文章
- UOJ #79 一般图最大匹配 带花树
http://uoj.ac/problem/79 一般图和二分图的区别就是有奇环,带花树是在匈牙利算法的基础上对奇环进行缩点操作,复杂度似乎是O(mn)和匈牙利一样. 具体操作是一个一个点做类似匈牙利 ...
- HDOJ 4687 Boke and Tsukkomi 一般图最大匹配带花树+暴力
一般图最大匹配带花树+暴力: 先算最大匹配 C1 在枚举每一条边,去掉和这条边两个端点有关的边.....再跑Edmonds得到匹配C2 假设C2+2==C1则这条边再某个最大匹配中 Boke and ...
- ZOJ 3316 Game 一般图最大匹配带花树
一般图最大匹配带花树: 建图后,计算最大匹配数. 假设有一个联通块不是完美匹配,先手就能够走那个没被匹配到的点.后手不论怎么走,都必定走到一个被匹配的点上.先手就能够顺着这个交错路走下去,最后一定是后 ...
- 【UOJ #79】一般图最大匹配 带花树模板
http://uoj.ac/problem/79 带花树模板,做法详见cyb的论文或fhq的博客. 带花树每次对一个未盖点bfs增广,遇到奇环就用并查集缩环变成花(一个点),同时记录每个点的Next( ...
- 【UOJ 79】 一般图最大匹配 (✿带花树开花)
从前一个和谐的班级,所有人都是搞OI的.有 n 个是男生,有 0 个是女生.男生编号分别为 1,…,n. 现在老师想把他们分成若干个两人小组写动态仙人掌,一个人负责搬砖另一个人负责吐槽.每个人至多属于 ...
- uoj#79. 一般图最大匹配(带花树)
传送门 带花树 不加证明的说一下过程好了:每次从一个未匹配点\(S\)出发bfs,设\(S\)为\(1\)类点,如果当前点\(v\)在本次bfs中未经过,分为以下两种情况 1.\(v\)是未匹配点,那 ...
- 【learning】一般图最大匹配——带花树
问题描述 对于一个图\(G(V,E)\),当点对集\(S\)满足任意\((u,v)\in S\),均有\(u,v\in V,(u,v)\in E\),且\(S\)中没有点重复出现,我们称\(S\) ...
- 【刷题】UOJ #79 一般图最大匹配
从前一个和谐的班级,所有人都是搞OI的.有 \(n\) 个是男生,有 \(0\) 个是女生.男生编号分别为 \(1,-,n\) . 现在老师想把他们分成若干个两人小组写动态仙人掌,一个人负责搬砖另一个 ...
- UOJ #79. 一般图最大匹配
板子: #include<iostream> #include<cstdio> #include<algorithm> #include<vector> ...
- kuangbin带你飞 匹配问题 二分匹配 + 二分图多重匹配 + 二分图最大权匹配 + 一般图匹配带花树
二分匹配:二分图的一些性质 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j ...
随机推荐
- 关于scrum敏捷测试
关于scrum的一些定义 敏捷软件开发方法是一种把新增功能通过较小的循环逐步迭代添加到项目中(的项目管理方法),工作是由自我组织的团队以高效合作的方式拥抱和适应变化来保证客户需求被真正满足的方式来完成 ...
- Hbase 教程-安装
HBase安装 安装前设置 安装Hadoop在Linux环境下之前,需要建立和使用Linux SSH(安全Shell).按照下面设立Linux环境提供的步骤. 创建一个用户 首先,建议从Unix创建一 ...
- 拉格朗日乘子法与KKT条件 && SVM中为什么要用对偶问题
参考链接: 拉格朗日乘子法和KKT条件 SVM为什么要从原始问题变为对偶问题来求解 为什么要用对偶问题 写在SVM之前——凸优化与对偶问题 1. 拉格朗日乘子法与KKT条件 2. SVM 为什么要从原 ...
- redis与mysql性能对比、redis缓存穿透、缓存雪崩
写在开始 redis是一个基于内存hash结构的缓存型db.其优势在于速读写能力碾压mysql.由于其为基于内存的db所以存储数据量是受限的. redis性能 redis读写性能测试redis官网测试 ...
- 下载android sdk更新包离线安装解决方案
本文转载自:http://xljboox.blog.163.com/blog/static/7628448320111159354738/ 第一次安装android sdk后进行开发包的更新,你应该了 ...
- Python--matplotlib 绘图可视化练手--折线图/条形图
最近学习matplotlib绘图可视化,感觉知识点比较多,边学习边记录. 对于数据可视化,个人建议Jupyter Notebook. 1.首先导包,设置环境 import pandas as pd i ...
- 3D打印产业链全景图
- 超级迷宫需求分析与建议-NABCD模型
超级迷宫需求分析与建议-NABCD模型 制作者-姜中希 1N-Need 需求 首先这是一个手机游戏风靡的时代,随着智能手机不断的更新问世,4G网络的不断扩大普及,越来越多的手机游戏受到广大玩家的追捧 ...
- Java Web文件上传原理分析(不借助开源fileupload上传jar包)
Java Web文件上传原理分析(不借助开源fileupload上传jar包) 博客分类: Java Web 最近在面试IBM时,面试官突然问到:如果让你自己实现一个文件上传,你的代码要如何写,不 ...
- python、Eclipse、pydev环境配置
转载来源:http://www.cnblogs.com/Bonker/p/3584707.html 编辑器: Eclipse + pydev插件: 1. Eclipse是写JAVA的IDE, 这样就可 ...