米勒罗宾素性测试(Miller–Rabin primality test)
如何判断一个素是素数 效率很高的筛法 打个表 (素数的倍数一定是合数) 就可以解决问题。
筛选法的效率很高,但是遇到大素数就无能为力了。
米勒罗宾素性测试是一个相当著名的判断是否是素数的算法
核心为费马小定理:
假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p
的余数恒等于1。
逆推一下即p的 a^(p-1)%p !=1 (0<a<p) ,它一定是合数。
如果 a^(p-1)%p ==1 (0<a<p) 则它可能是合数可能是素数。概率算法的概率就在这个 a上体现。
具体过程:
1 随机取一个 a
2 如果 它不满足 a^(n-1)%n ==1
3 则它一定是 合数
4 退出
5 如果它满足 a^(n-1)%n ==1
6 则它是一个素数的概率是1/2
7 回到 1
可以通过拉宾米勒素数测试的合数为伪素数与Carmichael(强伪素数)
Carmichael数是非常少的,在1~100000000范围内的整数中,只有255个Carmichael数。
为此有二次探测定理以确保该数为素数:
如果p是一个素数,0<x<p,则方程x^2≡1(mod p)的解为x=1,p-1
说明:
Miller-Rabin是随机算法
如果对这个过程重复100次,每次都没说它是合数,那这个数是素数的概率只有(1/2)^5100可能不是素数
米勒罗宾素性测试(Miller–Rabin primality test)的更多相关文章
- 与数论的厮守01:素数的测试——Miller Rabin
看一个数是否为质数,我们通常会用那个O(√N)的算法来做,那个算法叫试除法.然而当这个数非常大的时候,这个高增长率的时间复杂度就不够这个数跑了. 为了解决这个问题,我们先来看看费马小定理:若n为素数, ...
- Miller_Rabin (米勒-拉宾) 素性测试
之前一直对于这个神奇的素性判定方法感到痴迷而又没有时间去了解.借着学习<信息安全数学基础>将素性这一判定方法学习一遍. 首先证明一下费马小定理. 若p为素数,且gcd(a, p)=1, 则 ...
- POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)
关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...
- HDU1164_Eddy's research I【Miller Rabin素数测试】【Pollar Rho整数分解】
Eddy's research I Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- POJ1811- Prime Test(Miller–Rabin+Pollard's rho)
题目大意 给你一个非常大的整数,判断它是不是素数,如果不是则输出它的最小的因子 题解 看了一整天<初等数论及其应用>相关部分,终于把Miller–Rabin和Pollard's rho这两 ...
- 素数与素性测试(Miller-Rabin测试)
转载自Matrix大牛的博客 把代码翻译成C++ http://www.matrix67.com/blog/archives/234 题目链接: http://hihocoder.com/proble ...
- 【数学】【筛素数】Miller-Rabin素性测试 学习笔记
Miller-Rabin是一种高效的随机算法,用来检测一个数$p$是否是素数,最坏时间复杂度为$\log^3 p$,正确率约为$1-4^{-k}$,$k$是检验次数. 一.来源 Mil ...
- Miller-Rabin 素性测试 与 Pollard Rho 大整数分解
\(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...
随机推荐
- 微信小程序模板消息群发解决思路
基于微信的通知渠道,微信为开发者提供了可以高效触达用户的模板消息能力,以便实现服务的闭环并提供更佳的体验.(微信6.5.2及以上版本支持模板功能.低于该版本将无法收到模板消息.) 模板推送位置:服务通 ...
- 大前端-全栈-node+easyui+express+vue+es6+webpack+react
作者声明:本博客中所写的文章,都是博主自学过程的笔记,参考了很多的学习资料,学习资料和笔记会注明出处,所有的内容都以交流学习为主.有不正确的地方,欢迎批评指正 视频来源:https://www.bil ...
- 关于requestanimationframe
首先字面理解,请求动画框架, 用法: var nextFrame = (function() { return window.requestAnimationFrame || window.webki ...
- Masha and Bears(翻译+思维)
Description A family consisting of father bear, mother bear and son bear owns three cars. Father bea ...
- 王者荣耀交流协会 - 第7次Scrum会议(第二周)
1.例会照片 照片由王超(本人)拍摄,组内成员刘耀泽,高远博,王磊,王玉玲,王超,任思佳,袁玥全部到齐. 2.时间跨度: 2017年10月26日 17:05 — 17:47 ,总计42分钟. 3.地 ...
- CS小分队第一阶段冲刺站立会议(5月11日)
昨日成果:完成了倒计时器的制作,为其添加了声音:并对扫雷游戏的失败添加了动态效果: 遇到的困难:把图片放入picturebox中无法改变图片的大小,音乐格式只能使用.wav,该格式音乐比较大,增加了整 ...
- 2018软工实践—Alpha冲刺(5)
队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 协助测试的进行 测试项目运行的服务器环境 ...
- 《我是IT小小鸟》读后感
<我是IT小小鸟>读后感 说实话,我根本不喜欢看这本书,要不是因为老师要求我也不会去看的,其实当老师提起这本书的时候我还是有点兴趣,去看的,可是看了很多后,觉得这根本不适合我,里面说的都是 ...
- maven项目org.springframework.web.context.ContextLoaderListener的异常和tomcat zipexception的异常
使用到spring的maven web项目,在运行servers时,报错找不到org.springframework.web.context.ContextLoaderListener,web.xml ...
- MQTT协议-----订阅
MQTT协议笔记之订阅 http://www.blogjava.net/yongboy/archive/2014/04/12/412351.html MQTT - chszs的专栏 h ...