正则化方法:防止过拟合,提高泛化能力


在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合)。其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work。

为了防止overfitting,可以用的方法有很多,下文就将以此展开。有一个概念需要先说明,在机器学习算法中,我们常常将原始数据集分为三部分:training data、validation data,testing data。这个validation data是什么?它其实就是用来避免过拟合的,在训练过程中,我们通常用它来确定一些超参数(比如根据validation data上的accuracy来确定early stopping的epoch大小、根据validation data确定learning rate等等)。那为啥不直接在testing data上做这些呢?因为如果在testing data做这些,那么随着训练的进行,我们的网络实际上就是在一点一点地overfitting我们的testing data,导致最后得到的testing accuracy没有任何参考意义。因此,training data的作用是计算梯度更新权重,validation data如上所述,testing data则给出一个accuracy以判断网络的好坏。

避免过拟合的方法有很多:early stopping,数据集扩增(Data augmentation),正则化(Regularization)包括L1、L2(L2 regularization也叫weight decay),Dropout

L2 regularization(权重衰减)


L2正则化就是在代价函数后面再加上一个正则化项:

C0代表原始的代价函数,后面那一项就是L2正则化项,它是这样来的:所有参数w的平方的和,除以训练集的样本大小n。λ就是正则项系数,权衡正则项与C0项的比重。另外还有一个系数1/2,1/2经常会看到,主要是为了后面求导的结果方便,后面那一项求导会产生一个2,与1/2相乘刚好凑整。

L2正则化项是怎么避免overfitting的呢?我们推导一下看看,先求导:

可以发现L2正则化项对b的更新没有影响,但是对于w的更新有影响:

在不使用L2正则化时,求导结果中w前系数为1,现在w前面系数为 1−ηλ/n ,因为η、λ、n都是正的,所以 1−ηλ/n小于1,它的效果是减小w,这也就是权重衰减(weight decay)的由来当然考虑到后面的导数项,w最终的值可能增大也可能减小

另外,需要提一下,对于基于mini-batch的随机梯度下降,w和b更新的公式跟上面给出的有点不同:

对比上面w的更新公式,可以发现后面那一项变了,变成所有导数加和,乘以η再除以m,m是一个mini-batch中样本的个数。

到目前为止,我们只是解释了L2正则化项有让w“变小”的效果,但是还没解释为什么w“变小”可以防止overfitting?一个所谓“显而易见”的解释就是:更小的权值w,从某种意义上说,表示网络的复杂度更低,对数据的拟合刚刚好(这个法则也叫做奥卡姆剃刀),而在实际应用中,也验证了这一点,L2正则化的效果往往好于未经正则化的效果。当然,对于很多人(包括我)来说,这个解释似乎不那么显而易见,所以这里添加一个稍微数学一点的解释(引自知乎):

过拟合的时候,拟合函数的系数往往非常大,为什么?如下图所示,过拟合,就是拟合函数需要顾忌每一个点,最终形成的拟合函数波动很大。在某些很小的区间里,函数值的变化很剧烈。这就意味着函数在某些小区间里的导数值(绝对值)非常大,由于自变量值可大可小,所以只有系数足够大,才能保证导数值很大。

而正则化是通过约束参数的范数使其不要太大,所以可以在一定程度上减少过拟合情况。

L1 regularization


在原始的代价函数后面加上一个L1正则化项,即所有权重w的绝对值的和,乘以λ/n(这里不像L2正则化项那样,需要再乘以1/2,具体原因上面已经说过。)

同样先计算导数:

上式中sgn(w)表示w的符号。那么权重w的更新规则为:

比原始的更新规则多出了η * λ * sgn(w)/n这一项。当w为正时,更新后的w变小。当w为负时,更新后的w变大——因此它的效果就是让w往0靠,使网络中的权重尽可能为0,也就相当于减小了网络复杂度,防止过拟合。

另外,上面没有提到一个问题,当w为0时怎么办?当w等于0时,|W|是不可导的,所以我们只能按照原始的未经正则化的方法去更新w,这就相当于去掉η*λ*sgn(w)/n这一项,所以我们可以规定sgn(0)=0,这样就把w=0的情况也统一进来了。(在编程的时候,令sgn(0)=0,sgn(w>0)=1,sgn(w<0)=-1)

防止过拟合:L1/L2正则化的更多相关文章

  1. ML-线性模型 泛化优化 之 L1 L2 正则化

    认识 L1, L2 从效果上来看, 正则化通过, 对ML的算法的任意修改, 达到减少泛化错误, 但不减少训练误差的方式的统称 训练误差 这个就损失函数什么的, 很好理解. 泛化错误 假设 我们知道 预 ...

  2. 机器学习中L1,L2正则化项

    搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不 ...

  3. L0,L1,L2正则化浅析

    在机器学习的概念中,我们经常听到L0,L1,L2正则化,本文对这几种正则化做简单总结. 1.概念 L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数 ...

  4. L1,L2正则化代码

    # L1正则 import numpy as np from sklearn.linear_model import Lasso from sklearn.linear_model import SG ...

  5. L1和L2正则化(转载)

    [深度学习]L1正则化和L2正则化 在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况 ...

  6. 机器学习之路: python线性回归 过拟合 L1与L2正则化

    git:https://github.com/linyi0604/MachineLearning 正则化: 提高模型在未知数据上的泛化能力 避免参数过拟合正则化常用的方法: 在目标函数上增加对参数的惩 ...

  7. L1与L2正则化的对比及多角度阐述为什么正则化可以解决过拟合问题

    正则化是一种回归的形式,它将系数估计(coefficient estimate)朝零的方向进行约束.调整或缩小.也就是说,正则化可以在学习过程中降低模型复杂度和不稳定程度,从而避免过拟合的危险. 一. ...

  8. 【深度学习】L1正则化和L2正则化

    在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况.正则化是机器学习中通过显式的控制模 ...

  9. L1正则化比L2正则化更易获得稀疏解的原因

    我们知道L1正则化和L2正则化都可以用于降低过拟合的风险,但是L1正则化还会带来一个额外的好处:它比L2正则化更容易获得稀疏解,也就是说它求得的w权重向量具有更少的非零分量. 为了理解这一点我们看一个 ...

随机推荐

  1. 模拟在table中移动鼠标,高亮显示鼠标所在行,固定表头

    <!DOCTYPE html> <html lang="en"> <head> <meta http-equiv="Conten ...

  2. CentOS 最新版的下载地址 + 版本选择详解

    CentOS 最新版的下载地址 + 版本选择详解 发现越来越多的机关单位.事业单位开始使用 Linux 作为主要服务器,毕竟,Linux的稳定性和高效性是众所周知的,所以我也打算把自己这一块技术加强一 ...

  3. 各大主流.Net的IOC框架性能测试比较(转)

    出处:http://www.cnblogs.com/liping13599168/archive/2011/07/17/2108734.html 在上一篇中,我简单介绍了下Autofac的使用,有人希 ...

  4. 两个openssh间免密码登录

    以下针对的是openssh,而不是ssh,也不是ssh2.配置分两部分:一是对登录机的配置,二是对被登录机的配置,其中登录机为客户端,被登录机为服务端,也就是解决客户端到服务端的无密码登录问题.下述涉 ...

  5. swift学习之Label

              //UILabel的使用方法        let label:UILabel = UILabel(frame: CGRect(x: 0, y: 100, width: view. ...

  6. HRBUST1310 火影忍者之~鸣人 2017-03-06 16:01 104人阅读 评论(0) 收藏

    火影忍者之-鸣人 火影忍者的男主角漩涡鸣人,因为身上封印着邪恶的九尾妖狐,无父无母的他受尽了村人的冷眼与歧视,他下定决心要成为第六代火影,让所有人都认同他的存在,火影是动漫火影忍者中主人公鸣人所在的国 ...

  7. TypeToken 是google提供的一个解析Json数据的类库中一个类

    Type listType = new TypeToken<LinkedList<User>>(){}.getType(); Type是java里的reflect包的Type ...

  8. MYC编译器源码分析之程序入口

    前文.NET框架源码解读之MYC编译器讲了MyC编译器的架构,整个编译器是用C#语言写的,上图列出了MyC编译器编译一个C源文件的过程,编译主路径如下: 首先是入口Main函数用来解析命令行参数,读取 ...

  9. [Elixir003] Mix Archives

    在[Elixir001]中使用 mix escript.build 生成一个lifelog 的escript启动脚本. 今天我们尝试一下另一种方式:生成Archives. 我们先添加一个Task 1. ...

  10. 不错的Django博客

    https://blog.csdn.net/chengqiuming/article/category/8453874 杜塞的个人网站 https://www.dusaiphoto.com/ 追梦人物 ...