内容

  • 背景
  • 准备
  • 实践
  • 结果
  • 总结
  • 引用

背景

老规矩,先上代码吧

代码所在: https://github.com/BruceDone/darknet_demo

最近在做深度学习相关的项目的时候,了解在现有的深度学习检测流派里面有one-stage ,two stage 两种流派,one-stage流派中yolo模型十分的抢眼

OK,在进一步了解了yolo模型之后,发现不仅有提供速度非快的yolo v3 tiny 版本,而且准确率也非常高,顿时想起了之前在上一篇Tensorflow破解验证码只是做了一些简单的分类任务,还没有正式接触过物体检测的任务,这一次项目刚好可以拿过来测试一下自己工程能力,比如网易验证码之类的

如图很轻松将这些字符框出来,然后在进一步的做分类和识别就很容易了

准备

实践

安装环境

将cuda ,等环境安装好,本次将使用gpu训练,将darknet clone到本地

编译框架

进入darknet文件夹,修改Makefile

GPU=0  #如果使用GPU改为1
CUDNN=0 #如果使用CUDNN改为1
OPENCV=0 #opencv就不用使用了,下面两个一样
OPENMP=0
DEBUG=0
......
C=gcc
CPP=g++
NVCC=nvcc #这里如果编译报错,可以换成全路径

使用命令make ,得到二进制的文件darknet,训练框架已经准备好了

修改配置

这里重点修改cfg/yolov3-tiny.cfg 文件,本次的模型文件选用小版本的,这样训练速度快,而且识别速度也够快,应对本次的验证码定位完全够了,本次的任务是定位任务,所以分类看来只有一类:文字,这里我们需要修改 配置文件中的几项

Line 3: set batch=24 → using 24 images for every training step
Line 4: set subdivisions=8 → the batch will be divided by 8
Line 127: set filters=(classes + 5)*3 → in our case filters=18
Line 135: set classes=1 → the number of categories we want to detect
Line 171: set filters=(classes + 5)*3 → in our case filters=18
Line 177: set classes=1 → the number of categories we want to detect

至于为什么fliters = (classes + 5) * 3 ,参考 yolov3 paper: https://pjreddie.com/media/files/papers/YOLOv3.pdf 第2.3节的内容

准备数据

我自己使用selenium的google driver 下载了很多图片,接下来就是标注数据了

下载并编译labelimage工具 : https://github.com/tzutalin/labelImg ,安装完成后如图开始进行苦逼的标注工作

因为我们这里只有一类内容,所有只有一类框,大概准备了500张训练数据,120张验证数据,将原始的图片文件夹imgs,和label 文件夹准备好,使用代码data.py 生在训练能使用的txt训练文件配置,另外会将label出的xml 文件以规整的形式在图片文件生成同名的标注文件(darknet的训练就是这么定义的)

准备配置

在./weights 文件夹下使用使用 darknet53.sh 文件下载我们的预训练的权重文件,进入data 文件夹,我们准备如下文件

  • train.txt – 训练数据文件,由data.py产生
  • char.names – 类别配置文件
  • val.txt – 验证数据文件
  • train.data – 训练配置表

开始训练

进入darknet 文件夹,使用 命令

./darknet detector train data/train.data cfg/train.cfg weights/darknet53.conv.74 -gpus 1,2,3,4,5,6
1

使用gpu进行并行训练,一般来说我们看到训练的loss 达到0.6左右就可以停止了

结果

使用命令

./darknetdetector test train/train.data cfg/train.cfg session/train_final.weights test_imgs/1.jpg -thresh 0.5 -gpus 0

验证我们训练好的模型,我们可以看到darknet 文件夹里面会产生一个名为 predictions.jpg 的文件,这就是我们验证出来的结果文件,我自己这边手动测试了几好张,效果都还不错





到这里我们只是介绍了如何使用深度学习的模型去定位我们要的文字(或者说框),接下来我们可以crop出来我们的文字,然后送到检测(分类)网络里面,关于分类的网络,看下期有时间就进一步做了(有数据增强的彩蛋)

引用

[深度学习] 使用Darknet YOLO 模型破解中文验证码点击识别的更多相关文章

  1. 深度学习实战篇-基于RNN的中文分词探索

    深度学习实战篇-基于RNN的中文分词探索 近年来,深度学习在人工智能的多个领域取得了显著成绩.微软使用的152层深度神经网络在ImageNet的比赛上斩获多项第一,同时在图像识别中超过了人类的识别水平 ...

  2. zz深度学习中的注意力模型

    中间表示: C -> C1.C2.C3 i:target -> IT j: source -> JS sim(Query, Key) -> Value Key:h_j,类似某种 ...

  3. 时间序列深度学习:状态 LSTM 模型预测太阳黑子

    目录 时间序列深度学习:状态 LSTM 模型预测太阳黑子 教程概览 商业应用 长短期记忆(LSTM)模型 太阳黑子数据集 构建 LSTM 模型预测太阳黑子 1 若干相关包 2 数据 3 探索性数据分析 ...

  4. 学习《TensorFlow实战Google深度学习框架 (第2版) 》中文PDF和代码

    TensorFlow是谷歌2015年开源的主流深度学习框架,目前已得到广泛应用.<TensorFlow:实战Google深度学习框架(第2版)>为TensorFlow入门参考书,帮助快速. ...

  5. 深度学习中的序列模型演变及学习笔记(含RNN/LSTM/GRU/Seq2Seq/Attention机制)

    [说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![认真看图][认真看图] [补充说明]深度学习中的序列模型已经广泛应用于自然语言处理(例如机器翻 ...

  6. 深度学习教程 | Seq2Seq序列模型和注意力机制

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/35 本文地址:http://www.showmeai.tech/article-det ...

  7. 时间序列深度学习:状态 LSTM 模型预測太阳黑子(一)

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/kMD8d5R/article/details/82111558 作者:徐瑞龙,量化分析师,R语言中文 ...

  8. 深度学习中的Normalization模型

    Batch Normalization(简称 BN)自从提出之后,因为效果特别好,很快被作为深度学习的标准工具应用在了各种场合.BN 大法虽然好,但是也存在一些局限和问题,诸如当 BatchSize ...

  9. [优化]深度学习中的 Normalization 模型

    来源:https://www.chainnews.com/articles/504060702149.htm 机器之心专栏 作者:张俊林 Batch Normalization (简称 BN)自从提出 ...

随机推荐

  1. HTTPS科普扫盲

    为什么需要HTTPS HTTP是明文传输的,也就意味着,介于发送端.接收端中间的任意节点都可以知道你们传输的内容是什么.这些节点可能是路由器.代理等. 举个最常见的例子,用户登陆.用户输入账号,密码, ...

  2. LayIM.AspNetCore Middleware 开发日记(五)Init接口实现细节

    前言 “一旦开始了就要坚持下去“.为什么本文的第一句话是这么一句话呢,因为我经常就是开头轰轰烈烈,结果越来越枯燥,就不想做下去了.但是版图就放弃又那么不甘心,继续加油吧. 吐槽完毕,进入正题.在上一篇 ...

  3. Android App的签名打包(晋级篇)

    http://blog.csdn.net/linghu_java/article/details/6701666 Andriod应用程序如果要在手机或模拟器上安装,必须要有签名! 1.签名的意义 为了 ...

  4. DPDK运行出现EAL Error reading from file descriptor 23 Input output error

    原因 dpdk不支持该网卡导致,需要修改一行代码,跳过dpdk pci 检查. 解决方法 修改lib/librte_eal/linuxapp/igb_uio/igb_uio.c 将文件中该行修改 pc ...

  5. spring学习笔记---数据库事务并发与锁详解

    多事务运行并发问题 在实际应用中,往往是一台(或多台)服务器向无数客户程序提供服务,当服务器查询数据库获取数据时,如果没有采用必要的隔离机制,可能会存在数据库事务的并发问题,下面是一些常见的并发问题分 ...

  6. webapi 异常处理

    参考:https://docs.microsoft.com/zh-cn/aspnet/web-api/overview/error-handling/exception-handling ①HttpR ...

  7. java点滴之MulticastSocket的使用

    一基本概念 该类恰是上文介绍的DatagramSocket的子类. DatagramSocket仅仅同意数据报发送给指定的目标地址,而MulticastSocket能够将数据报以广播的方式发送到多个c ...

  8. 在Red Hat Enterprise Linux 7.3上安装SQL Server 2017

    必要条件: 1.在此快速安装过程中,您需要安装SQL Server 2017或SQL Server 2019上Red Hat Enterprise Linux (RHEL) 7.3 +.然后使用sql ...

  9. Python + 百度Api 通过地址关键字获得格式化的地址信息

    由于用户输入是千奇百怪的,除了格式语法不合要求之外的,即便是所谓的合法数据也是五花八门.尤其是地址,所有才由此文. 百度Api注册一个账号,创建一个应用后就会有一个`ak`的参数,就够了. Pytho ...

  10. 关于虚拟机linux网络的一个问题(基于cntos7)

    刚刚开始学习搭建Linux集群,目前出现的比较麻烦的一个问题是Linux网络ip问题.其实网上好多出现类似问题的解答大部分说是因为克隆的问题,但实际情况先克隆产生的问题应该是很好排查的.所幸,有博主针 ...