这个题是从左上角到右下角的路径和最小,实际就是一道dp题。

第一种写法是只初始化(0,0)位置,第二种写法则是把第一行、第一列都初始化了。个人更喜欢第二种写法,简单一点。

dp的右下角的值就为最终的值

第一种写法:

class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int rows = grid.size();
if(rows <= )
return -;
int cols = grid[].size();
if(cols <= )
return -;
vector<vector<int> > result(rows,vector<int>(cols));
result[][] = grid[][];
for(int i = ;i < rows;i++){
for(int j = ;j < cols;j++){
if(i != && j != )
result[i][j] = grid[i][j] + min(result[i-][j],result[i][j-]);
if(i == && j != )
result[i][j] = result[i][j-] + grid[i][j];
if(j == && i != )
result[i][j] = result[i-][j] + grid[i][j];
}
}
return result[rows-][cols-];
}
};

第二种写法:

class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size();
if(m <= )
return ;
int n = grid[].size();
if(n <= )
return ;
vector<vector<int> > dp(m,vector<int>(n));
dp[][] = grid[][];
for(int i = ;i < m;i++)
dp[i][] = dp[i-][] + grid[i][];
for(int i = ;i < n;i++)
dp[][i] = dp[][i-] + grid[][i];
for(int i = ;i < m;i++){
for(int j = ;j < n;j++){
dp[i][j] = grid[i][j] + min(dp[i-][j],dp[i][j-]);
}
}
return dp[m-][n-];
}
};

leetcode64. Minimum Path Sum的更多相关文章

  1. Leetcode64.Minimum Path Sum最小路径和

    给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [   [1,3,1], [1,5,1] ...

  2. 【leetcode】Minimum Path Sum

    Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...

  3. leecode 每日解题思路 64 Minimum Path Sum

    题目描述: 题目链接:64 Minimum Path Sum 问题是要求在一个全为正整数的 m X n 的矩阵中, 取一条从左上为起点, 走到右下为重点的路径, (前进方向只能向左或者向右),求一条所 ...

  4. 【LeetCode练习题】Minimum Path Sum

    Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...

  5. LeetCode之“动态规划”:Minimum Path Sum && Unique Paths && Unique Paths II

    之所以将这三道题放在一起,是因为这三道题非常类似. 1. Minimum Path Sum 题目链接 题目要求: Given a m x n grid filled with non-negative ...

  6. LeetCode: Minimum Path Sum 解题报告

    Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...

  7. [LeetCode] Unique Paths && Unique Paths II && Minimum Path Sum (动态规划之 Matrix DP )

    Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corne ...

  8. 【LeetCode】64. Minimum Path Sum

    Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...

  9. 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance

    引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...

随机推荐

  1. 一:Bootstrap-css样式

    页面大块布局: div.container 栅格系统: 一行分成 12 列 div.row div.col-md-12 div.col-xs-12 <div class="row&qu ...

  2. jsp技术知识点

    1.jsp被Tomcat翻译成.java文件后,会被放在Tomcat安装目录下的\work\Catalina\localhost\station\org\apache\jsp文件夹下 2.El表达式表 ...

  3. [LeetCode]Combination Sum题解(DFS)

    Combination Sum Given a set of candidate numbers (C) (without duplicates) and a target number (T), f ...

  4. PoPo数据可视化周刊第3期 - 台风可视化

    9月台风席卷全球,本刊特别选取台风最佳可视化案例,数据可视化应用功力最深厚者,当属纽约时报,而传播效果最佳的是The Weather Channel关于Florence的视频预报,运用了数据可视化.可 ...

  5. Java中返回值的详解

    package com.company; //java中main()函数中调用其他方法的两种方式//1.实例化对象 public class returnDemo { public static vo ...

  6. js-99乘法表的练习

    <html> <head> <title>World</title> <style type="text/css"> & ...

  7. php 生成唯一id的几种解决方法(实例)

    php 生成唯一id,网上查了下,有很多的方法 1.md5(time() . mt_rand(1,1000000)); 这种方法有一定的概率会出现重复 2.php内置函数uniqid() uniqid ...

  8. drupal7 STMP邮件模块配置

    drupal7.54 STMP  version = "7.x-1.6" 配置:   注意:上面的“用户名”需要和“站点信息”页面的电子邮件地址保持一致,邮件发送才能成功 ---- ...

  9. MapReduce两种执行环境介绍:本地测试环境,服务器环境

    本地测试环境(windows):1.在windows下配置hadoop的环境变量2.拷贝debug工具(winutils.exe)到hadoop目录中的bin目录,注意winutils.exe的版本要 ...

  10. Angular1.x directive(指令里的)的compile,pre-link,post-link,link,transclude

    The nitty-gritty of compile and link functions inside AngularJS directives  The nitty-gritty of comp ...