权限题

线段树分治加线性基

首先这个题要求删除线性基肯定是没法处理的

于是我们套上一个线段树分治

线段树分治就是一种能够避免删除的神仙操作

我们发现询问是对一个时间的单点询问,而每一个数存在的时间却是一个区间

我们求出来每个数的存在区间,每一个区间对应在线段树上并不会超过\(logn\)段

我们就把这些存活区间插入到线段树里去,标记永久化一下

由于一个线性基也就是\(logn\)的空间,所以我们直接一路把线性基搞下来,中间把标记插入线性基就好了

到叶子结点我们就可以处理询问了

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define LL long long
#define re register
#define maxn 500005
inline int read() {
char c=getchar();int x=0,r=1;
while(c<'0'||c>'9') {if(c=='-') r=-1;c=getchar();}
while(c>='0'&&c<='9') x=(x<<3ll)+(x<<1ll)+c-48,c=getchar();return x*r;
}
struct Base {
int lb[33];
inline void ins(int x) {
for(re int i=31;i>=0;--i)
if(x>>i&1) {
if(!lb[i]) {lb[i]=x;return;}
x^=lb[i];
}
}
inline int query() {
int ans=0;
for(re int i=31;i>=0;--i) if((ans^lb[i])>ans) ans^=lb[i];
return ans;
}
}A;
std::vector<int> v[maxn*3];
int n,m,sz,tot;
int lst[maxn],nxt[maxn],L[maxn],R[maxn],val[maxn],ans[maxn],c[maxn],a[maxn];
inline int find(int x) {
int l=1,r=sz;
while(l<=r) {
int mid=l+r>>1;
if(c[mid]==x) return mid;
if(c[mid]<x) l=mid+1;else r=mid-1;
}
return 0;
}
void change(int l,int r,int x,int y,int val,int i) {
if(x<=l&&y>=r) {v[i].push_back(val);return;}
int mid=l+r>>1;
if(x<=mid) change(l,mid,x,y,val,i<<1);
if(y>=mid+1) change(mid+1,r,x,y,val,i<<1|1);
}
void solve(int l,int r,int i,Base A) {
for(re int j=0;j<v[i].size();j++)
A.ins(v[i][j]);
if(l==r) {
ans[l]=A.query();
return;
}
int mid=l+r>>1;
solve(l,mid,i<<1,A);solve(mid+1,r,i<<1|1,A);
}
int main() {
n=read();
for(re int i=1;i<=n;i++) a[i]=read();
for(re int i=1;i<=n;i++) c[i]=((a[i]>0)?a[i]:-1*a[i]);
std::sort(c+1,c+n+1);sz=std::unique(c+1,c+n+1)-c-1;
for(re int i=1;i<=n;i++) {
int x=find((a[i]>0)?a[i]:-1*a[i]);
if(a[i]>0) {
nxt[i]=lst[x],lst[x]=i;
}
else {
L[++tot]=lst[x];R[tot]=i-1;val[tot]=-1*a[i];
lst[x]=nxt[lst[x]];
}
}
for(re int i=1;i<=sz;i++)
while(lst[i]) L[++tot]=lst[i],R[tot]=n,val[tot]=c[i],lst[i]=nxt[lst[i]];
for(re int i=1;i<=tot;i++)
change(1,n,L[i],R[i],val[i],1);
solve(1,n,1,A);
for(re int i=1;i<=n;i++) printf("%d\n",ans[i]);
return 0;
}

「bzoj 4184: shallot」的更多相关文章

  1. BZOJ.4184.shallot(线段树分治 线性基)

    BZOJ 裸的线段树分治+线性基,就是跑的巨慢_(:з」∠)_ . 不知道他们都写的什么=-= //41652kb 11920ms #include <map> #include < ...

  2. BZOJ 4184: shallot

    Description 在某时刻加入或删除一个点,问每个时刻的集合中能异或出来的最大值是多少. Sol 线段树+按时间分治+线性基. 按时间分治可以用 \(logn\) 的时间来换取不进行删除的操作. ...

  3. bzoj 4184 shallot——线段树分治+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4184 本来想了可持久化trie,不过空间是 nlogn (出一个节点的时候把 tot 复原就 ...

  4. bzoj 4184: shallot (线段树维护线性基)

    题面 \(solution:\) 这一题绝对算的上是一道经典的例题,它向我们诠释了一种新的线段树维护方式(神犇可以跳过了).像这一类需要加入又需要维护删除的问题,我们曾经是遇到过的像莫对,线段树... ...

  5. 「bzoj 4025: 二分图」

    题目 显然二分图没有奇环 于是考虑使用并查集维护一下看看是否存在奇环 我们可以考虑加权并查集,维护出\(x\)到\(fa_x\)的实际距离 由于我们只需要考虑奇偶性,于是我们处理出到根的路径异或一下就 ...

  6. 「bzoj 3944: Sum」

    题目 杜教筛板子了 #include<iostream> #include<cstring> #include<cstdio> #include<cmath& ...

  7. BZOJ 4184 shallot 线性基+分治

    Description 小苗去市场上买了一捆小葱苗,她突然一时兴起,于是她在每颗小葱苗上写上一个数字,然后把小葱叫过来玩游戏. 每个时刻她会给小葱一颗小葱苗或者是从小葱手里拿走一颗小葱苗,并且让小葱从 ...

  8. bzoj 4184 shallot 时间线建线段树+vector+线性基

    题目大意 n个时间点 每个时间点可以插入一个权值或删除一个权值 求每个时间点结束后异或最大值 分析 异或最大值用线性基 但是线性基并不支持删除操作 我们可以对时间线建一棵线段树 离线搞出每个权值出现的 ...

  9. bzoj 4184: shallot【线性基+时间线段树】

    学到了线段树新姿势! 先离线读入,根据时间建一棵线段树,每个节点上开一个vector存这个区间内存在的数(使用map来记录每个数出现的一段时间),然后在线段树上dfs,到叶子节点就计算答案. 注意!! ...

随机推荐

  1. js导航下拉菜单

    使用定时器.鼠标移动事件 var img = $('#user_head'); var menu = $('.nav_list'); var i=0; var timer; img.mouseente ...

  2. SQL Server将DataTable传入存储过程(Table Value Parameter)

    博主在做毕业设计的时候,需要用到事务处理和多次将数据写入不同的表中,但是 SQL Server 数据库是不支持数组类型变量的,想要实现数组的功能,可以通过 XML 和数据表的方法实现,但是实现方法非常 ...

  3. poj 2992 Divisors (素数打表+阶乘因子求解)

    Divisors Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9617   Accepted: 2821 Descript ...

  4. HDU 1596 最短路变形

    这道题怎么都是TLE,报警了,先放在这 http://acm.hdu.edu.cn/showproblem.php?pid=1596 #include <iostream> #includ ...

  5. sql中,In和where的区别

    SQL 语句中In 和 Where 的含义不同.应用解释如下: 1.如需有条件地从表中选取.删除.更新数据时,使用Where:2.In只作为Where条件子句下的一个运算符,除了In之外还有Betwe ...

  6. Maven学习总结(二):安装

    一:Maven下载 下载地址:http://maven.apache.org/download.cgi 下载完成后,得到一个压缩包,解压,可以看到maven的组成目录 Maven目录分析 bin:含有 ...

  7. 搞懂WebSocket原理

    一.websocket与http WebSocket是HTML5出的东西(协议),也就是说HTTP协议没有变化,或者说没关系,但HTTP是不支持持久连接的(长连接,循环连接的不算) 首先HTTP有 1 ...

  8. 一行代码解决各种IE的兼容问题

    一行代码解决各种IE的兼容问题  在网站开发中不免因为各种兼容问题苦恼,针对兼容问题,其实IE给出了解决方案Google也给出了解决方案百度也应用了这种方案去解决IE的兼容问题 百度源代码如下 < ...

  9. 【javascript】javasrcipt设计模式之策略模式

    策略模式支持在运行时由使用者选择合适的算法,对于使用者而言不用关心背后的具体事项,而使用者自动根据当前程序执行的上下文和配置,从已有的算法列表中选择出合适的算法来处理当前任务. 1.要解决的问题 2. ...

  10. 怎样修复grub开机引导(grub rescue)

    很多时候,特别是在linux调整分区后,开机重启时会出现         error : unknow filesystem         grub rescue>         的字样,系 ...