codeforces#505--B Weakened Common Divisor
B. Weakened Common Divisor
time limit per test
1.5 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
During the research on properties of the greatest common divisor (GCD) of a set of numbers, Ildar, a famous mathematician, introduced a brand new concept of the weakened common divisor (WCD) of a list of pairs of integers.
For a given list of pairs of integers (a1,b1)(a1,b1), (a2,b2)(a2,b2), ..., (an,bn)(an,bn) their WCD is arbitrary integer greater than 11, such that it divides at least one element in each pair. WCD may not exist for some lists.
For example, if the list looks like [(12,15),(25,18),(10,24)][(12,15),(25,18),(10,24)], then their WCD can be equal to 22, 33, 55 or 66 (each of these numbers is strictly greater than 11 and divides at least one number in each pair).
You're currently pursuing your PhD degree under Ildar's mentorship, and that's why this problem was delegated to you. Your task is to calculate WCD efficiently.
Input
The first line contains a single integer nn (1≤n≤1500001≤n≤150000) — the number of pairs.
Each of the next nn lines contains two integer values aiai, bibi (2≤ai,bi≤2⋅1092≤ai,bi≤2⋅109).
Output
Print a single integer — the WCD of the set of pairs.
If there are multiple possible answers, output any; if there is no answer, print −1−1.
Examples
input
Copy
3
17 18
15 24
12 15
output
Copy
6
input
Copy
2
10 16
7 17
output
Copy
-1
input
Copy
5
90 108
45 105
75 40
165 175
33 30
output
Copy
5
Note
In the first example the answer is 66 since it divides 1818 from the first pair, 2424 from the second and 1212 from the third ones. Note that other valid answers will also be accepted.
In the second example there are no integers greater than 11 satisfying the conditions.
In the third example one of the possible answers is 55. Note that, for example, 1515 is also allowed, but it's not necessary to maximize the output.
枚举一下第一对数的因子用set存下
注意用素数筛来做不然会超时
也要注意n=1的情况
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long LL;
int n;
const int maxn = 150005;
LL a[maxn], b[maxn];
set<LL> num;
set<LL>::iterator it;
void cal(LL x, LL y)
{
for(LL i = 2; i * i <= x; i++){
if(x % i == 0){
num.insert(i);
}
while(x % i == 0){
x /= i;
}
}
if(x > 1)
num.insert(x);
for(LL i = 2; i * i <= y; i++){
if(y % i == 0){
num.insert(i);
}
while(y % i == 0){
y /= i;
}
}
if(y > 1){
num.insert(y);
}
}
int main()
{
while(scanf("%d", &n) != EOF){
num.clear();
for(int i = 0; i < n; i++){
scanf("%I64d%I64d", &a[i], &b[i]);
}
cal(a[0], b[0]);
if(n == 1){
it = num.begin();
printf("%I64d\n", *it);
}
else{
bool ed = false;
for(it = num.begin(); it != num.end(); it++){
bool flag = true;
LL t = *it;
for(int j = 1; j < n; j++){
if((a[j] % t != 0) && (b[j] % t != 0)){
flag = false;
break;
}
}
if(flag){
printf("%I64d\n", t);
ed = true;
break;
}
}
if(!ed){
printf("-1\n");
}
}
}
return 0;
}
codeforces#505--B Weakened Common Divisor的更多相关文章
- CF #505 B Weakened Common Divisor(数论)题解
题意:给你n组,每组两个数字,要你给出一个数,要求这个是每一组其中一个数的因数(非1),给出任意满足的一个数,不存在则输出-1. 思路1:刚开始乱七八糟暴力了一下果断超时,然后想到了把每组两个数相乘, ...
- CF1025B Weakened Common Divisor 数学
Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input st ...
- Codeforces #505(div1+div2) B Weakened Common Divisor
题意:给你若干个数对,每个数对中可以选择一个个元素,问是否存在一种选择,使得这些数的GCD大于1? 思路:可以把每个数对的元素乘起来,然后求gcd,这样可以直接把所有元素中可能的GCD求出来,从小到大 ...
- 【Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) B】Weakened Common Divisor
[链接] 我是链接,点我呀:) [题意] 给你n个数对(ai,bi). 让你求一个大于1的数字x 使得对于任意的i x|a[i] 或者 x|b[i] [题解] 求出第一个数对的两个数他们有哪些质因子. ...
- CodeForces - 1025B Weakened Common Divisor
http://codeforces.com/problemset/problem/1025/B 大意:n对数对(ai,bi),求任意一个数满足是所有数对中至少一个数的因子(大于1) 分析: 首先求所有 ...
- codeforces 1025B Weakened Common Divisor(质因数分解)
题意: 给你n对数,求一个数,可以让他整除每一对数的其中一个 思路: 枚举第一对数的质因数,然后暴力 代码: #include<iostream> #include<cstdio&g ...
- CF1025B Weakened Common Divisor【数论/GCD/思维】
#include<cstdio> #include<string> #include<cstdlib> #include<cmath> #include ...
- CF1025B Weakened Common Divisor
思路: 首先选取任意一对数(a, b),分别将a,b进行因子分解得到两个因子集合然后取并集(无需计算所有可能的因子,只需得到不同的质因子即可),之后再暴力一一枚举该集合中的元素是否满足条件. 时间复杂 ...
- CF1025B Weakened Common Divisor 题解
Content 定义 \(n\) 个数对 \((a_1,b_1),(a_2,b_2),(a_3,b_3),...,(a_n,b_n)\) 的 \(\text{WCD}\) 为能够整除每个数对中至少一个 ...
随机推荐
- bootstrap+PHP表单验证
来源:http://www.sucaihuo.com/php/1814.html demo http://www.sucaihuo.com/jquery/18/1814/demo/
- Unity UI大小动态设置(Resize Unity UI RectTransform)
我们在开发过程中发现,要调整Unity UI元素的大小,RectTransform提供了sizeDelta属性可以用来动态修改RectTransform的大小,但同时我们也google到另外一个修改R ...
- 怎样用MathType输入带分数
MathType作为一种常用的数学公式编辑器.虽然其操作已经很简单了,但是对于刚刚接触MathType的新用户来说,一些最基本的MathType输入也是有一定难度的,一些人在MathType分数的编辑 ...
- MyException--org.apache.ibatis.exceptions.PersistenceException: ### Error building SqlSession. ###
org.apache.ibatis.exceptions.PersistenceException: ### Error building SqlSession. ### The error may ...
- POJ 1947 Rebuilding Road(树形DP)
Description The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, n ...
- wsdl.exe的用法与参数说明
wsdl.exe的用法与参数说明 打开.net自己带的Visual Studio .NET 2003或 2005 命令提示 输入 wsdl /language:VB /n:mynamespace /o ...
- python2.0_s12_day9_协程&多线程和cpu,磁盘io之间的关系
事件驱动和异步io有什么直接关系. 当我们访问一个网页,不考虑网络问题.我们人类不觉得网页慢. 但是实际中对计算机来说还是慢.那慢在哪里.io io操作是整个网络操作中最慢的.比如你打开网页要是有2秒 ...
- Redis(六)-- SpringMVC整合Redis
一.pom.xml <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www ...
- Linux rdate 命令
rdate命令可以用来查看远程服务器的时间,也可以同步远程服务器的时间到本机 [root@localhost ~]$ yum install -y rdate [root@localhost ~]$ ...
- Vitamio视频播放器
前言 虽然Android已经内置了VideoView组件和MediaPlayer类来支持开发视频播放器,但支持格式.性能等各方面都十分有限,这里与大家一起利用免费的Vitamio来打造属于自己的And ...