B. Weakened Common Divisor

time limit per test

1.5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

During the research on properties of the greatest common divisor (GCD) of a set of numbers, Ildar, a famous mathematician, introduced a brand new concept of the weakened common divisor (WCD) of a list of pairs of integers.

For a given list of pairs of integers (a1,b1)(a1,b1), (a2,b2)(a2,b2), ..., (an,bn)(an,bn) their WCD is arbitrary integer greater than 11, such that it divides at least one element in each pair. WCD may not exist for some lists.

For example, if the list looks like [(12,15),(25,18),(10,24)][(12,15),(25,18),(10,24)], then their WCD can be equal to 22, 33, 55 or 66 (each of these numbers is strictly greater than 11 and divides at least one number in each pair).

You're currently pursuing your PhD degree under Ildar's mentorship, and that's why this problem was delegated to you. Your task is to calculate WCD efficiently.

Input

The first line contains a single integer nn (1≤n≤1500001≤n≤150000) — the number of pairs.

Each of the next nn lines contains two integer values aiai, bibi (2≤ai,bi≤2⋅1092≤ai,bi≤2⋅109).

Output

Print a single integer — the WCD of the set of pairs.

If there are multiple possible answers, output any; if there is no answer, print −1−1.

Examples

input

Copy

3
17 18
15 24
12 15

output

Copy

6

input

Copy

2
10 16
7 17

output

Copy

-1

input

Copy

5
90 108
45 105
75 40
165 175
33 30

output

Copy

5

Note

In the first example the answer is 66 since it divides 1818 from the first pair, 2424 from the second and 1212 from the third ones. Note that other valid answers will also be accepted.

In the second example there are no integers greater than 11 satisfying the conditions.

In the third example one of the possible answers is 55. Note that, for example, 1515 is also allowed, but it's not necessary to maximize the output.

枚举一下第一对数的因子用set存下

注意用素数筛来做不然会超时

也要注意n=1的情况

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std; typedef long long LL;
int n;
const int maxn = 150005;
LL a[maxn], b[maxn];
set<LL> num;
set<LL>::iterator it; void cal(LL x, LL y)
{
for(LL i = 2; i * i <= x; i++){
if(x % i == 0){
num.insert(i);
}
while(x % i == 0){
x /= i;
}
}
if(x > 1)
num.insert(x); for(LL i = 2; i * i <= y; i++){
if(y % i == 0){
num.insert(i);
}
while(y % i == 0){
y /= i;
}
}
if(y > 1){
num.insert(y);
}
} int main()
{
while(scanf("%d", &n) != EOF){
num.clear();
for(int i = 0; i < n; i++){
scanf("%I64d%I64d", &a[i], &b[i]);
}
cal(a[0], b[0]); if(n == 1){
it = num.begin();
printf("%I64d\n", *it);
}
else{
bool ed = false;
for(it = num.begin(); it != num.end(); it++){
bool flag = true;
LL t = *it;
for(int j = 1; j < n; j++){
if((a[j] % t != 0) && (b[j] % t != 0)){
flag = false;
break;
}
}
if(flag){
printf("%I64d\n", t);
ed = true;
break;
}
}
if(!ed){
printf("-1\n");
}
}
}
return 0;
}

codeforces#505--B Weakened Common Divisor的更多相关文章

  1. CF #505 B Weakened Common Divisor(数论)题解

    题意:给你n组,每组两个数字,要你给出一个数,要求这个是每一组其中一个数的因数(非1),给出任意满足的一个数,不存在则输出-1. 思路1:刚开始乱七八糟暴力了一下果断超时,然后想到了把每组两个数相乘, ...

  2. CF1025B Weakened Common Divisor 数学

    Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input st ...

  3. Codeforces #505(div1+div2) B Weakened Common Divisor

    题意:给你若干个数对,每个数对中可以选择一个个元素,问是否存在一种选择,使得这些数的GCD大于1? 思路:可以把每个数对的元素乘起来,然后求gcd,这样可以直接把所有元素中可能的GCD求出来,从小到大 ...

  4. 【Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) B】Weakened Common Divisor

    [链接] 我是链接,点我呀:) [题意] 给你n个数对(ai,bi). 让你求一个大于1的数字x 使得对于任意的i x|a[i] 或者 x|b[i] [题解] 求出第一个数对的两个数他们有哪些质因子. ...

  5. CodeForces - 1025B Weakened Common Divisor

    http://codeforces.com/problemset/problem/1025/B 大意:n对数对(ai,bi),求任意一个数满足是所有数对中至少一个数的因子(大于1) 分析: 首先求所有 ...

  6. codeforces 1025B Weakened Common Divisor(质因数分解)

    题意: 给你n对数,求一个数,可以让他整除每一对数的其中一个 思路: 枚举第一对数的质因数,然后暴力 代码: #include<iostream> #include<cstdio&g ...

  7. CF1025B Weakened Common Divisor【数论/GCD/思维】

    #include<cstdio> #include<string> #include<cstdlib> #include<cmath> #include ...

  8. CF1025B Weakened Common Divisor

    思路: 首先选取任意一对数(a, b),分别将a,b进行因子分解得到两个因子集合然后取并集(无需计算所有可能的因子,只需得到不同的质因子即可),之后再暴力一一枚举该集合中的元素是否满足条件. 时间复杂 ...

  9. CF1025B Weakened Common Divisor 题解

    Content 定义 \(n\) 个数对 \((a_1,b_1),(a_2,b_2),(a_3,b_3),...,(a_n,b_n)\) 的 \(\text{WCD}\) 为能够整除每个数对中至少一个 ...

随机推荐

  1. 【转】MFC WM_CTLCOLOR 消息

    WM_CTLCOLOR消息用来完成对EDIT, STATIC, BUTTON等控件设置背景和字体颜色, 其用法如下: 1.首先在自己需要设置界面的对话框上点击右键-->建立类向导-->加入 ...

  2. e648. 双击和三击事件

    component.addMouseListener(new MyMouseListener()); public class MyMouseListener extends MouseAdapter ...

  3. php -- php控制linux关机、重启、注销

        php 里面有个 system(exec) 方法, 可以调用系统命令.     重启先建立一个脚本(比喻 /root/reboot_server.sh ),重启用的.//路径可随便,但最少必须 ...

  4. Floyd算法实例

    ~ 当k=0时,我们关注的是邻接矩阵的第0行和第0列,即顶点0的入边和出边: 考察矩阵中其他元素,如果元素D[i][j]向第0行和第0列的投影D[0][j]和D[i][0]都有值,就说明原图中从 i ...

  5. zabbix-agent 自动注册

    1. 概述 上一篇内容<zabbix自动发现配置>,大概内容是zabbix server去扫描一个网段,把在线的主机添加到Host列表中.我们本篇内容与上篇相反,这次是Active age ...

  6. Java 基本概念:jvm、jdk、jre、jse

    jvm 是java虚拟机,将java的class字节码文件翻译成二进制可执行程序.jdk 是java的开发包 Javasdk, java的开发工具,包含SUN公司提供的javaAPI,将java源码编 ...

  7. 总结一下前端面试题之Html和CSS

    总结一下关于前端的面试题,今天我们分享关于Html和CSS部分的 面试 (1) 1. 常用那几种浏览器测试?有哪些内核(Layout Engine)? 2. 说下行内元素和块级元素的区别?行内块元素的 ...

  8. linux convert命令安装及使用

    linux下ImageMagick安装和使用 检查系统有无安装ImageMagick shell> rpm -qa | grep ImageMagick 没有就开始安装ImageMagick s ...

  9. brew 中的时间格式转换

    char * pACNowStr = NULL; JulianType jtNow; ISHELL_GetJulianDate(pIShell, , &jtNow); pACNowStr = ...

  10. 浅析Linux内核同步机制

    非常早之前就接触过同步这个概念了,可是一直都非常模糊.没有深入地学习了解过,最近有时间了,就花时间研习了一下<linux内核标准教程>和<深入linux设备驱动程序内核机制>这 ...