题目链接:

http://codeforces.com/problemset/problem/8/C

C. Looking for Order

time limit per test:4 seconds
memory limit per test:512 megabytes
#### 问题描述
> Girl Lena likes it when everything is in order, and looks for order everywhere. Once she was getting ready for the University and noticed that the room was in a mess — all the objects from her handbag were thrown about the room. Of course, she wanted to put them back into her handbag. The problem is that the girl cannot carry more than two objects at a time, and cannot move the handbag. Also, if he has taken an object, she cannot put it anywhere except her handbag — her inherent sense of order does not let her do so.
>
> You are given the coordinates of the handbag and the coordinates of the objects in some Сartesian coordinate system. It is known that the girl covers the distance between any two objects in the time equal to the squared length of the segment between the points of the objects. It is also known that initially the coordinates of the girl and the handbag are the same. You are asked to find such an order of actions, that the girl can put all the objects back into her handbag in a minimum time period.

输入

The first line of the input file contains the handbag's coordinates xs, ys. The second line contains number n (1 ≤ n ≤ 24) — the amount of objects the girl has. The following n lines contain the objects' coordinates. All the coordinates do not exceed 100 in absolute value. All the given positions are different. All the numbers are integer.

输出

In the first line output the only number — the minimum time the girl needs to put the objects into her handbag.

In the second line output the possible optimum way for Lena. Each object in the input is described by its index number (from 1 to n), the handbag's point is described by number 0. The path should start and end in the handbag's point. If there are several optimal paths, print any of them.

样例输入

1 1

3

4 3

3 4

0 0

样例输出

32

0 1 2 0 3 0

题意

给你垃圾桶的位置和垃圾的位置,你每次能从垃圾桶出发捡一到两个垃圾然后回到垃圾桶,问如何规划使得捡垃圾所花时间最短(时间是以两点距离平方为基准)

题解

状压dp,有点像最优顶点配对问题的算法来处理,时间复杂度为n*2^n。

代码

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII; const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0); //start---------------------------------------------------------------------- const int maxn=24; int dp[1<<maxn],n;
int pre[1<<maxn];
struct Node{
int a,b;
bool type;
}nds[1<<maxn]; PII pt[maxn]; int dis(int i,int j){
int a=pt[i].X-pt[j].X;
int b=pt[i].Y-pt[j].Y;
return a*a+b*b;
} int main() {
scf("%d%d",&pt[0].X,&pt[0].Y);
scf("%d",&n);
for(int i=1;i<=n;i++){
scf("%d%d",&pt[i].X,&pt[i].Y);
} clr(dp,0x7f);
dp[0]=0;
clr(pre,-1);
for(int stat=1;stat<(1<<n);stat++){
for(int i=0;i<n;i++){
if(stat&(1<<i)){
///第一个单独不匹配
if(dp[stat]>dp[stat^(1<<i)]+2*dis(0,i+1)){
dp[stat]=dp[stat^(1<<i)]+2*dis(0,i+1);
pre[stat]=stat^(1<<i);
nds[stat].a=i+1;
nds[stat].type=0;
}
dp[stat]=min(dp[stat],dp[stat^(1<<i)]+2*dis(0,i+1)); ///第一个和后面的某一个匹配
for(int j=0;j<n;j++){
if(j!=i&&stat&(1<<j)){
int tmp=dp[stat^(1<<i)^(1<<j)]+dis(0,i+1)+dis(i+1,j+1)+dis(0,j+1);
if(dp[stat]>tmp){
dp[stat]=tmp;
pre[stat]=stat^(1<<i)^(1<<j);
nds[stat].a=i+1; nds[stat].b=j+1;
nds[stat].type=1;
}
}
}
//这个减枝非常关键!和最优顶点配对的做法一样
break;
}
}
} VI ans;
ans.pb(0);
int p=(1<<n)-1;
while(p!=0){
if(nds[p].type==0){
ans.pb(nds[p].a);
}else{
ans.pb(nds[p].a);
ans.pb(nds[p].b);
}
ans.pb(0);
p=pre[p];
}
reverse(all(ans));
prf("%d\n",dp[(1<<n)-1]); rep(i,0,ans.sz()-1) prf("%d ",ans[i]);
prf("%d\n",ans[ans.sz()-1]); return 0;
} //end-----------------------------------------------------------------------

Codeforces Beta Round #8 C. Looking for Order 状压dp的更多相关文章

  1. Codeforces Beta Round #8 C. Looking for Order 状压

    C. Looking for Order 题目连接: http://www.codeforces.com/contest/8/problem/C Description Girl Lena likes ...

  2. Educational Codeforces Round 13 E. Another Sith Tournament 状压dp

    E. Another Sith Tournament 题目连接: http://www.codeforces.com/contest/678/problem/E Description The rul ...

  3. Codeforces 453B Little Pony and Harmony Chest:状压dp【记录转移路径】

    题目链接:http://codeforces.com/problemset/problem/453/B 题意: 给你一个长度为n的数列a,让你构造一个长度为n的数列b. 在保证b中任意两数gcd都为1 ...

  4. [多校联考2019(Round 5 T1)] [ATCoder3912]Xor Tree(状压dp)

    [多校联考2019(Round 5)] [ATCoder3912]Xor Tree(状压dp) 题面 给出一棵n个点的树,每条边有边权v,每次操作选中两个点,将这两个点之间的路径上的边权全部异或某个值 ...

  5. CF1103D Codeforces Round #534 (Div. 1) Professional layer 状压 DP

    题目传送门 https://codeforces.com/contest/1103/problem/D 题解 失去信仰的低水平选手的看题解的心路历程. 一开始看题目以为是选出一些数,每个数可以除掉一个 ...

  6. Codeforces 1383C - String Transformation 2(找性质+状压 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 神奇的强迫症效应,一场只要 AC 了 A.B.D.E.F,就一定会把 C 补掉( 感觉这个 C 难度比 D 难度高啊-- 首先考虑对问题进 ...

  7. Codeforces Beta Round #5 C. Longest Regular Bracket Sequence 栈/dp

    C. Longest Regular Bracket Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.c ...

  8. Codeforces Beta Round #14 (Div. 2) D. Two Paths 树形dp

    D. Two Paths 题目连接: http://codeforces.com/contest/14/problem/D Description As you know, Bob's brother ...

  9. Codeforces Beta Round #10 B. Cinema Cashier (树状数组)

    题目大意: n波人去k*k的电影院看电影. 要尽量往中间坐,往前坐. 直接枚举,贪心,能坐就坐,坐在离中心近期的地方. #include <cstdio> #include <ios ...

随机推荐

  1. [原]nginx 一下快一下慢的问题

    在本机用thinkphp建了一个小网站,没任何问题,发布到云空间,就出现访问很慢的情况,而且是一下快一下慢,奇数次快,偶数次慢 换了一台win10的笔记本,情况一样,更新了phpstudy更新了thi ...

  2. 关于flume的filechannel的 full 问题

    事务启动以后,批量向事务Transaction的一个putList的尾部写入,putlist是一个LinkedBlockingDeque . 事务提交的时候, 把putlist中的event批量移除, ...

  3. 大数据调错系列之hadoop在开发工具控制台上打印不出日志的解决方法

    (1)在windows环境上配置HADOOP_HOME环境变量 (2)在eclipse上运行程序 (3)注意:如果eclipse打印不出日志,在控制台上只显示 1.log4j:WARN No appe ...

  4. Ubuntu16.04 下 python 3.6 安装以及各版本python切换(同时解决各种依赖缺失)

    有些博客给出了从源代码通过./configure.make.sudo make 会导致安装玩之后出现各种依赖缺失的问题,如_sqlite3._bz2 等问题. 当然也有很多帖子给出了从系统自带的pyt ...

  5. 笔记-scrapy-selector

    笔记-scrapy-selector scrapy版本:1.5.0 1.总述 scrapy内置selector建立在lxml上. 2.使用 可以使用xpath和css方法来进行解析,两者都返回列表: ...

  6. Linux入门进阶第五天——用户管理(帐号管理 )下

    一.身份切换 为了避免 rm -rf /* 的悲剧发生,平时使用时,尽量使用一般帐号!需要环境设置等必要时才使用root 1.su命令 一般地,推荐使用su - / su - username的形式来 ...

  7. 20155212 实验三 敏捷开发与XP实践

    20155212 实验三 敏捷开发与XP实践 实验内容 XP基础 XP核心实践 相关工具 实验要求 没有Linux基础的同学建议先学习<Linux基础入门(新版)><Vim编辑器&g ...

  8. 20155332 实验二 Java面向对象程序设计

    目录 一.单元测试和TDD 任务一:实现百分制成绩转成"优.良.中.及格.不及格"五级制成绩的功能 任务二:以TDD的方式研究学习StringBuffer 二.面向对象三要素:封装 ...

  9. PHP学习笔记之析构函数以及static,self,parent关键字

    引用 $jordan1 = &$jordan; 当jordan1 = null; //此时会直接调用析构函数 而当无&时,就需要等到所有的引用都为null时,才调用析构函数析构  乔丹 ...

  10. Mac Eclipse快捷键

    Command + O:显示大纲Command + 1:快速修复Command + D:删除当前行Command + Option + ↓:复制当前行到下一行Command + Option + ↑: ...