案例分析:

  需要将hdfs上的数据导出到mysql里的一张表里。

  虚拟机集群的为:centos1-centos5

问题1:
在centos1上将hdfs上的数据导出到centos1上的mysql里:

sqoop export
  --connect jdbc:mysql://centos1:3306/test \
  --username root \
  --password root \
  --table order_uid \
  --export-dir /user/hive/warehouse/test.db/order_uid/ \
  --fields-terminated-by ','
报错:
Error executing statement: java.sql.SQLException: Access denied for user 'root'@'centos1' (using password: YES)

改成:

sqoop export 
  --connect jdbc:mysql://localhost:3306/test \
  --username root \
  --password root \
  --table order_uid \
  --export-dir /user/hive/warehouse/test.db/order_uid/ \
  --fields-terminated-by ','

报错:

Error: java.io.IOException: com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: Table 'test.order_uid' doesn't exist at
org.apache.sqoop.mapreduce.AsyncSqlRecordWriter.close(AsyncSqlRecordWriter.java:) at
org.apache.hadoop.mapred.MapTask$NewDirectOutputCollector.close(MapTask.java:) at
org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:) at org.apache.hadoop.mapred.MapTask.run(MapTask.java:) at
org.apache.hadoop.mapred.YarnChild$.run(YarnChild.java:) at java.security.AccessController.doPrivileged(Native Method) at
javax.security.auth.Subject.doAs(Subject.java:) at
...

问题2:

在centos3上将hdfs上的数据导出到centos1上的mysql里:

sqoop export
  --connect jdbc:mysql://centos1:3306/test \
  --username root \
  --password root \
  --table order_uid \
  --export-dir /user/hive/warehouse/test.db/order_uid/ \
  --fields-terminated-by ','

报错:

// :: ERROR mapreduce.ExportJobBase: Export job failed!
// :: ERROR tool.ExportTool: Error during export:
Export job failed!
at org.apache.sqoop.mapreduce.ExportJobBase.runExport(ExportJobBase.java:)
at org.apache.sqoop.manager.SqlManager.exportTable(SqlManager.java:)
at org.apache.sqoop.tool.ExportTool.exportTable(ExportTool.java:)
at org.apache.sqoop.tool.ExportTool.run(ExportTool.java:)
at org.apache.sqoop.Sqoop.run(Sqoop.java:)
at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:)
at org.apache.sqoop.Sqoop.runSqoop(Sqoop.java:)
at org.apache.sqoop.Sqoop.runTool(Sqoop.java:)
at org.apache.sqoop.Sqoop.runTool(Sqoop.java:)
at org.apache.sqoop.Sqoop.main(Sqoop.java:)

在网上找到两种解决方案:

1.在网上找到有人说在hdfs的路径写到具体文件,而不是写到目录,改成:

sqoop export
  --connect jdbc:mysql://centos1:3306/test \
  --username root \
  --password root \
  --table order_uid \
  --export-dir /user/hive/warehouse/test.db/order_uid/t1.dat \
  --fields-terminated-by ','

还是报相同错误!

2. 更改mysql里表的编码

将cengos1里mysql的表order_uid字符集编码改成:utf-8,重新执行,centos1的mysql表里导入了部分数据, 仍然报错:

Job failed as tasks failed. failedMaps: failedReduces:
// :: INFO mapreduce.Job: Counters:
File System Counters
FILE: Number of bytes read=
FILE: Number of bytes written=
FILE: Number of read operations=
FILE: Number of large read operations=
FILE: Number of write operations=
HDFS: Number of bytes read=
HDFS: Number of bytes written=
HDFS: Number of read operations=
HDFS: Number of large read operations=
HDFS: Number of write operations=
Job Counters
Failed map tasks=
Killed map tasks=
Launched map tasks=
Data-local map tasks=
Rack-local map tasks=
Total time spent by all maps in occupied slots (ms)=
Total time spent by all reduces in occupied slots (ms)=
Total time spent by all map tasks (ms)=
Total vcore-milliseconds taken by all map tasks=
Total megabyte-milliseconds taken by all map tasks=
Map-Reduce Framework
Map input records=
Map output records=
Input split bytes=
Spilled Records=
Failed Shuffles=
Merged Map outputs=
GC time elapsed (ms)=
CPU time spent (ms)=
Physical memory (bytes) snapshot=
Virtual memory (bytes) snapshot=
Total committed heap usage (bytes)=
File Input Format Counters
Bytes Read=
File Output Format Counters
Bytes Written=
// :: INFO mapreduce.ExportJobBase: Transferred 1.1035 KB in 223.4219 seconds (5.0577 bytes/sec)
// :: INFO mapreduce.ExportJobBase: Exported records.
// :: ERROR mapreduce.ExportJobBase: Export job failed!
// :: ERROR tool.ExportTool: Error during export:
Export job failed!
at org.apache.sqoop.mapreduce.ExportJobBase.runExport(ExportJobBase.java:)
at org.apache.sqoop.manager.SqlManager.exportTable(SqlManager.java:)
at org.apache.sqoop.tool.ExportTool.exportTable(ExportTool.java:)
at org.apache.sqoop.tool.ExportTool.run(ExportTool.java:)
at org.apache.sqoop.Sqoop.run(Sqoop.java:)
at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:)
at org.apache.sqoop.Sqoop.runSqoop(Sqoop.java:)
at org.apache.sqoop.Sqoop.runTool(Sqoop.java:)
at org.apache.sqoop.Sqoop.runTool(Sqoop.java:)
at org.apache.sqoop.Sqoop.main(Sqoop.java:)

当指定map为1时:

sqoop export
  --connect jdbc:mysql://centos1:3306/test \
  --username root \
  --password root \
  --table order_uid \
  --export-dir /user/hive/warehouse/test.db/order_uid \
  --fields-terminated-by ',' \
--m

运行成功了!!!

sqoop默认情况下的map数量为4,也就是说这种情况下1个map能运行成功,而多个map会失败。于是将map改为2又试了一遍:

sqoop export
  --connect jdbc:mysql://centos1:3306/test \
  --username root \
  --password root \
  --table order_uid \
  --export-dir /user/hive/warehouse/test.db/order_uid \
  --fields-terminated-by ',' \
--m 2

执行结果为:

// :: INFO mapreduce.Job: Counters:
File System Counters
FILE: Number of bytes read=
FILE: Number of bytes written=
FILE: Number of read operations=
FILE: Number of large read operations=
FILE: Number of write operations=
HDFS: Number of bytes read=
HDFS: Number of bytes written=
HDFS: Number of read operations=
HDFS: Number of large read operations=
HDFS: Number of write operations=
Job Counters
Failed map tasks=
Launched map tasks=
Data-local map tasks=
Rack-local map tasks=
Total time spent by all maps in occupied slots (ms)=
Total time spent by all reduces in occupied slots (ms)=
Total time spent by all map tasks (ms)=
Total vcore-milliseconds taken by all map tasks=
Total megabyte-milliseconds taken by all map tasks=
Map-Reduce Framework
Map input records=
Map output records=
Input split bytes=
Spilled Records=
Failed Shuffles=
Merged Map outputs=
GC time elapsed (ms)=
CPU time spent (ms)=
Physical memory (bytes) snapshot=
Virtual memory (bytes) snapshot=
Total committed heap usage (bytes)=
File Input Format Counters
Bytes Read=
File Output Format Counters
Bytes Written=
// :: INFO mapreduce.ExportJobBase: Transferred bytes in 99.4048 seconds (7.0922 bytes/sec)
// :: INFO mapreduce.ExportJobBase: Exported 5 records.
// :: ERROR mapreduce.ExportJobBase: Export job failed!
// :: ERROR tool.ExportTool: Error during export:
Export job failed!
at org.apache.sqoop.mapreduce.ExportJobBase.runExport(ExportJobBase.java:)
at org.apache.sqoop.manager.SqlManager.exportTable(SqlManager.java:)
at org.apache.sqoop.tool.ExportTool.exportTable(ExportTool.java:)
at org.apache.sqoop.tool.ExportTool.run(ExportTool.java:)
at org.apache.sqoop.Sqoop.run(Sqoop.java:)
at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:)
at org.apache.sqoop.Sqoop.runSqoop(Sqoop.java:)
at org.apache.sqoop.Sqoop.runTool(Sqoop.java:)
at org.apache.sqoop.Sqoop.runTool(Sqoop.java:)
at org.apache.sqoop.Sqoop.main(Sqoop.java:)

可以看到它成功的导入了5条记录!!!

通过jobhistory窗口可以看到两个map一个成功,一个执行失败

点击task的name:

成功的任务由centos4节点运行的,失败的task由centos1运行,又回到了问题1,就是centos1不能访问centos1的mysql数据!

最终一个朋友告诉我再centos1上单独添加对centos1的远程访问权限:

grant all privileges on *.* to 'root'@'centos1' identified by 'root' with grant option;
flush privileges;

然后重新运行一下,问题1和问题2都被愉快的解决了!!!

当时在centos1上的mysql里执行了:

GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' IDENTIFIED BY 'root' WITH GRANT OPTION; 
flush privileges;

对其他节点添加了远程访问,但没有对自己添加远程访问权限。

一个sqoop export案例中踩到的坑的更多相关文章

  1. 项目中踩过的坑之-sessionStorage

    总想写点什么,却不知道从何写起,那就从项目中踩过的坑开始吧,希望能给可能碰到相同问题的小伙伴一点帮助. 项目情景: 有一个id,要求通过当前网页打开一个新页面(不是当前页面),并把id传给打开的新页面 ...

  2. ng-zorro-antd中踩过的坑

    ng-zorro-antd中踩过的坑 前端项目中,我们经常会使用阿里开源的组件库:ant-design,其提供的组件已经足以满足多数的需求,拿来就能直接用,十分方便,当然了,有些公司会对组件库进行二次 ...

  3. 【spring】使用spring过程中踩到的坑

    这里简单记录一下,学习spring的时候碰过的异常: 异常:org.springframework.beans.factory.BeanDefinitionStoreException: Unexpe ...

  4. git工作中常用命令-工作中踩过的坑

    踩坑篇又来啦,这是我在工作中从git小白进化到现在工作中运用自如的过程中,踩过的坑,以及解决办法. 1.基于远程develop分支,建一个本地task分支,并切换到该task分支 git checko ...

  5. 转:Flutter开发中踩过的坑

    记录一下入手Flutter后实际开发中踩过的一些坑,这些坑希望后来者踩的越少越好.本文章默认读者已经掌握Flutter初步开发基础. 坑1问题:在debug模式下,App启动第一个页面会很慢,甚至是黑 ...

  6. vue项目开发中踩过的坑

    一.路由 这两天移动端的同事在研究vue,跟我说看着我的项目做的,子路由访问的时候是空白的,我第一反应是,不会模块没加载进来吧,还是....此处省略一千字... 废话不多说上代码 路由代码 { pat ...

  7. ionic2+angular2中踩的那些坑

    好久没写什么东西了,最近在做一个ionic2的小东西,遇到了不少问题,也记录一下,避免后来的同学走弯路. 之前写过一篇使用VS2015开发ionic1的文章,但自己还没摸清门道,本来也是感兴趣就学习了 ...

  8. JasperReport 中踩过的坑

      Mac Book Pro 10.13.6Jaspersoft Studio community version 6.6.9JDK 8 安装 Jaspersoft Studio Jasper Rep ...

  9. spring-data-redis 使用过程中踩过的坑

    spring-data-redis简介 Spring-data-redis是spring大家族的一部分,提供了在srping应用中通过简单的配置访问redis服务,对reids底层开发包(Jedis, ...

随机推荐

  1. Python学习---Django的基础学习

    django实现流程 Django学习框架:     #安装: pip3 install django          添加环境变量    #1  创建project       django-ad ...

  2. Linux 系统安装[Redhat]

    系统下载 Linux操作系统各版本ISO镜像下载 系统安装 1.1. 分区知识 1.2. 磁盘分区命名以及编号 IDE盘:  hda  第一块盘 hda1/第一块盘的第一个分区 hdb  第二块盘 h ...

  3. Exchange2016 & Skype for business 集成之三统一联系人存储

    Exchange2016&Skype for business集成之二统一联系人存储 利用统一的联系人存储库,用户可以维护单个联系人列表,然后使这些联系人适用于多个应用程序,包括 Skype ...

  4. 乘风破浪:LeetCode真题_015_3Sum

    乘风破浪:LeetCode真题_015_3Sum 一.前言 关于集合的操作,也是编程最容易考试的问题,比如求集和中的3个元素使得它们的和为0,并且要求不重复出现,这样的问题该怎么样解决呢? 二.3Su ...

  5. 沉淀,再出发:百度地图api的使用浅思

    沉淀,再出发:百度地图api的使用浅思 一.前言   百度地图想必大家都使用过,但是看到别人使用百度地图的API时候是不是一头雾水呢,其实真正明白了其中的意义就像是调用豆瓣电影api的接口一样的简单, ...

  6. 如何解决ORA-12547错误!

    最近在布置一个应用程序连接oracle后台数据库,数据库为oracle11g(11.2.0.2).应用程序属于root用户,所以需要以root用户通过系统认证的方式连接数据库.设置了root用户的环境 ...

  7. 如何恢复在Windows 10中被永久删除的照片?

    照片被误删除了需要恢复?这里推荐一款软件:winutilities.使用WinUtilities文件恢复向导允许您通过简单的点击恢复已删除的照片或从Windows 10回收站中恢复被删除的照片. 恢复 ...

  8. 2018-2019-2 网络对抗技术 20165322 Exp4 恶意代码分析

    2018-2019-2 网络对抗技术 20165322 Exp4 恶意代码分析 目录 实验内容与步骤 系统运行监控 恶意软件分析 实验过程中遇到的问题 基础问题回答 实验总结与体会 实验内容与步骤 系 ...

  9. P1081 开车旅行

    题目描述 小 A 和小 B 决定利用假期外出旅行,他们将想去的城市从 1 到 N 编号,且编号较小的 城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i 的海拔高度为 Hi,城市 ...

  10. 复习静态页面polo-360

    1.ps快捷键 ctrl+1 恢复到100% ctrl+0 适应屏幕大小 ctrl+r 显示标尺 辅助线的利用 矩形框--图像--裁剪:文件存储为web所用格式,注意选格式. 1个像素的平铺 雪碧图的 ...