Flume是什么

Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。

Flume的功能

  • 支持在日志系统中定制各类数据发送方,用于收集数据
  • 提供对数据简单处理,并写到各类数据接收方(可定制)的能力

Flume的组成

  • Agent:核心组件

    • source 负责数据的产生或搜集
    • channel 是一种短暂的存储容器,负责数据的存储持久化
    • sink 负责数据的转发

Flume的工作流示意图

  • 数据流模型

  • 多Agent模型

  • 合并模型

  • 混合模型

Flume的安装

下载安装包并解压

wget http://www.apache.org/dyn/closer.lua/flume/1.8.0/apache-flume-1.8.0-bin.tar.gz
tar -zxvf apache-flume-1.8.0-bin.tar.gz

配置环境变量

vim ~/.bashrc

export FLUME_HOME=/usr/local/src/apache-flume-1.8.0-bin
export PATH=$PATH:$FLUME_HOME/bin source ~/.bashrc

Flume简单操作

  • netcat模式

    进入conf目录下编写netcat.conf文件,内容如下:
agent.sources = netcatSource
agent.channels = memoryChannel
agent.sinks = loggerSink agent.sources.netcatSource.type = netcat
agent.sources.netcatSource.bind = localhost
agent.sources.netcatSource.port = 11111
agent.sources.netcatSource.channels = memoryChannel agent.sinks.loggerSink.type = logger
agent.sinks.loggerSink.channel = memoryChannel agent.channels.memoryChannel.type = memory
agent.channels.memoryChannel.capacity = 100
agent.channels.memoryChannel.transactionCapacity = 10

启动一个实例

(py27) [root@master conf]# pwd
/usr/local/src/apache-flume-1.8.0-bin/conf
(py27) [root@master conf]# flume-ng agent --conf conf --conf-file ./netcat.conf --name agent -Dflume.root.logger=INFO,console

启动成功

18/10/24 11:26:35 INFO node.PollingPropertiesFileConfigurationProvider: Configuration provider starting
18/10/24 11:26:35 INFO node.PollingPropertiesFileConfigurationProvider: Reloading configuration file:./flume_netcat.conf
18/10/24 11:26:35 INFO conf.FlumeConfiguration: Processing:loggerSink
18/10/24 11:26:35 INFO conf.FlumeConfiguration: Processing:loggerSink
18/10/24 11:26:35 INFO conf.FlumeConfiguration: Added sinks: loggerSink Agent: agent
18/10/24 11:26:35 INFO conf.FlumeConfiguration: Post-validation flume configuration contains configuration for agents: [agent]
18/10/24 11:26:35 INFO node.AbstractConfigurationProvider: Creating channels
18/10/24 11:26:35 INFO channel.DefaultChannelFactory: Creating instance of channel memoryChannel type memory
18/10/24 11:26:35 INFO node.AbstractConfigurationProvider: Created channel memoryChannel
18/10/24 11:26:35 INFO source.DefaultSourceFactory: Creating instance of source netcatSource, type netcat
18/10/24 11:26:35 INFO sink.DefaultSinkFactory: Creating instance of sink: loggerSink, type: logger
18/10/24 11:26:35 INFO node.AbstractConfigurationProvider: Channel memoryChannel connected to [netcatSource, loggerSink]
18/10/24 11:26:35 INFO node.Application: Starting new configuration:{ sourceRunners:{netcatSource=EventDrivenSourceRunner: { source:org.apache.flume.source.NetcatSource{name:netcatSource,state:IDLE} }} sinkRunners:{loggerSink=SinkRunner: { policy:org.apache.flume.sink.DefaultSinkProcessor@262b92ac counterGroup:{ name:null counters:{} } }} channels:{memoryChannel=org.apache.flume.channel.MemoryChannel{name: memoryChannel}} }
18/10/24 11:26:35 INFO node.Application: Starting Channel memoryChannel
18/10/24 11:26:35 INFO node.Application: Waiting for channel: memoryChannel to start. Sleeping for 500 ms
18/10/24 11:26:36 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: CHANNEL, name: memoryChannel: Successfully registered new MBean.
18/10/24 11:26:36 INFO instrumentation.MonitoredCounterGroup: Component type: CHANNEL, name: memoryChannel started
18/10/24 11:26:36 INFO node.Application: Starting Sink loggerSink
18/10/24 11:26:36 INFO node.Application: Starting Source netcatSource
18/10/24 11:26:36 INFO source.NetcatSource: Source starting
18/10/24 11:26:36 INFO source.NetcatSource: Created serverSocket:sun.nio.ch.ServerSocketChannelImpl[/172.16.155.120:11111]

然后新开一个终端,发送数据

(py27) [root@master apache-flume-1.8.0-bin]# telnet localhost 11111
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
1
OK

查看接收数据

18/10/24 11:30:15 INFO sink.LoggerSink: Event: { headers:{} body: 31 0D                                           1. }

注:如果没有telnet工具,请先安装:yum install telnet

  • Exec模式

    编写配置文件exec.conf
agent.sources = netcatSource
agent.channels = memoryChannel
agent.sinks = loggerSink agent.sources.netcatSource.type = exec
agent.sources.netcatSource.command = tail -f /home/master/FlumeTest/test_data/exec.log
agent.sources.netcatSource.channels = memoryChannel agent.sinks.loggerSink.type = logger
agent.sinks.loggerSink.channel = memoryChannel agent.channels.memoryChannel.type = memory
agent.channels.memoryChannel.capacity = 100
agent.channels.memoryChannel.transactionCapacity = 10

启动实例

(py27) [root@master conf]# flume-ng agent --conf conf --conf-file ./flume_exec.conf --name agent -Dflume.root.logger=INFO,console

启动成功后,创建配置文件中的exec.log文件

(py27) [root@master test_data]# ls
exec.log
(py27) [root@master test_data]# pwd
/home/master/FlumeTest/test_data
(py27) [root@master test_data]#

然后通过echo命令模拟日志的产生

(py27) [root@master test_data]# echo 'Hello World!!!' >> exec.log

查看接收的日志

18/10/25 09:19:52 INFO sink.LoggerSink: Event: { headers:{} body: 48 65 6C 6C 6F 20 57 6F 72 6C 64 21 21 21       Hello World!!! }

如何将日志保存到HDFS上

修改配置文件

agent.sources = netcatSource
agent.channels = memoryChannel
agent.sinks = loggerSink agent.sources.netcatSource.type = exec
agent.sources.netcatSource.command = tail -f /home/master/FlumeTest/test_data/exec.log
agent.sources.netcatSource.channels = memoryChannel agent.sinks.loggerSink.type = hdfs
agent.sinks.loggerSink.hdfs.path = /flume/%y-%m-%d/%H%M/
agent.sinks.loggerSink.hdfs.filePrefix = exec_hdfs_
agent.sinks.loggerSink.hdfs.round = true
agent.sinks.loggerSink.hdfs.roundValue = 1
agent.sinks.loggerSink.hdfs.roundUnit = minute
agent.sinks.loggerSink.hdfs.rollInterval = 3
agent.sinks.loggerSink.hdfs.rollSize = 20
agent.sinks.loggerSink.hdfs.rollCount = 5
agent.sinks.loggerSink.hdfs.useLocalTimeStamp = true
agent.sinks.loggerSink.hdfs.fileType = DataStream
agent.sinks.loggerSink.channel = memoryChannel agent.channels.memoryChannel.type = memory
agent.channels.memoryChannel.capacity = 100
agent.channels.memoryChannel.transactionCapacity = 10

然后启动实例

(py27) [root@master conf]# flume-ng agent --conf conf --conf-file ./flume_exec_hdfs.conf --name agent -Dflume.root.logger=INFO,console

然后可以看到它把exec.log文件里的日志给写到了HDFS上

18/10/25 09:54:26 INFO hdfs.HDFSDataStream: Serializer = TEXT, UseRawLocalFileSystem = false
18/10/25 09:54:26 INFO hdfs.BucketWriter: Creating /flume/18-10-25/0954//exec_hdfs_.1540475666623.tmp
18/10/25 09:54:32 INFO hdfs.BucketWriter: Closing /flume/18-10-25/0954//exec_hdfs_.1540475666623.tmp
18/10/25 09:54:32 INFO hdfs.BucketWriter: Renaming /flume/18-10-25/0954/exec_hdfs_.1540475666623.tmp to /flume/18-10-25/0954/exec_hdfs_.1540475666623
18/10/25 09:54:32 INFO hdfs.HDFSEventSink: Writer callback called.

我们进入HDFS查看,可以看到log里的内容

(py27) [root@master sbin]# hadoop fs -ls /flume/18-10-25/0954
Found 1 items
-rw-r--r-- 3 root supergroup 15 2018-10-25 09:54 /flume/18-10-25/0954/exec_hdfs_.1540475666623
(py27) [root@master sbin]# hadoop fs -text /flume/18-10-25/0954/exec_hdfs_.1540475666623
Hello World!!!

然后我们再次写入写的log,然后再查看

//写入新的log
(py27) [root@master test_data]# echo 'test001' >> exec.log
(py27) [root@master test_data]# echo 'test002' >> exec.log
//进入HDFS目录查看
(py27) [root@master sbin]# hadoop fs -ls /flume/18-10-25
Found 2 items
drwxr-xr-x - root supergroup 0 2018-10-25 09:54 /flume/18-10-25/0954
drwxr-xr-x - root supergroup 0 2018-10-25 09:56 /flume/18-10-25/0956
(py27) [root@master sbin]# hadoop fs -ls /flume/18-10-25/0956
Found 1 items
-rw-r--r-- 3 root supergroup 16 2018-10-25 09:56 /flume/18-10-25/0956/exec_hdfs_.1540475766338
(py27) [root@master sbin]# hadoop fs -text /flume/18-10-25/0956/exec_hdfs_.1540475766338
test001
test002
  • 故障转移实例

    首先需要三台机器,master、slave1、slave2,然后分别配置实例并启动,master上的agent实例发送日志,slave1和slave2接收日志

    master配置
agent.sources = netcatSource
agent.channels = memoryChannel
agent.sinks = loggerSink1 loggerSink2 agent.sinkgroups = group agent.sources.netcatSource.type = exec
agent.sources.netcatSource.command = tail -f /home/master/FlumeTest/test_data/exec.log
agent.sources.netcatSource.channels = memoryChannel agent.sinks.loggerSink1.type = avro
agent.sinks.loggerSink1.hostname = slave1
agent.sinks.loggerSink1.port = 52020
agent.sinks.loggerSink1.channel = memoryChannel agent.sinks.loggerSink2.type = avro
agent.sinks.loggerSink2.hostname = slave2
agent.sinks.loggerSink2.port = 52020
agent.sinks.loggerSink2.channel = memoryChannel agent.channels.memoryChannel.type = memory
agent.channels.memoryChannel.capacity = 10000
agent.channels.memoryChannel.transactionCapacity = 1000 agent.sinkgroups.group.sinks = loggerSink1 loggerSink2 agent.sinkgroups.group.processor.type = failover
agent.sinkgroups.group.processor.loggerSink1 = 10
agent.sinkgroups.group.processor.loggerSink2 = 1
agent.sinkgroups.group.processor.maxpenalty = 10000

slave1配置

agent.sources = netcatSource
agent.channels = memoryChannel
agent.sinks = loggerSink agent.sources.netcatSource.type = avro
agent.sources.netcatSource.bind = slave1
agent.sources.netcatSource.port = 52020
agent.sources.netcatSource.channels = memoryChannel agent.sinks.loggerSink.type = logger
agent.sinks.loggerSink.channel = memoryChannel agent.channels.memoryChannel.type = memory
agent.channels.memoryChannel.capacity = 10000
agent.channels.memoryChannel.transactionCapacity = 1000

slave2配置

agent.sources = netcatSource
agent.channels = memoryChannel
agent.sinks = loggerSink agent.sources.netcatSource.type = avro
agent.sources.netcatSource.bind = slave2
agent.sources.netcatSource.port = 52020
agent.sources.netcatSource.channels = memoryChannel agent.sinks.loggerSink.type = logger
agent.sinks.loggerSink.channel = memoryChannel agent.channels.memoryChannel.type = memory
agent.channels.memoryChannel.capacity = 10000
agent.channels.memoryChannel.transactionCapacity = 1000

分别启动master、slave1、slave2的agent,然后在mater上写入日志,然后观察谁收到了

//master
(py27) [root@master test_data]# echo 'hello' >> exec.log
//slave1
18/10/25 10:53:53 INFO sink.LoggerSink: Event: { headers:{} body: 68 65 6C 6C 6F hello }
//slave2
18/10/25 10:43:00 INFO ipc.NettyServer: [id: 0x8da012e3, /172.16.155.120:39726 => /172.16.155.122:52020] CONNECTED: /172.16.155.120:39726

发现是slave1收到数据,然后我们把slave1的agent关掉,再次发送日志

//master
(py27) [root@master test_data]# echo '11111' >> exec.log
//slave2
18/10/25 10:43:00 INFO ipc.NettyServer: [id: 0x8da012e3, /172.16.155.120:39726 => /172.16.155.122:52020] CONNECTED: /172.16.155.120:39726
18/10/25 10:56:53 INFO sink.LoggerSink: Event: { headers:{} body: 31 31 31 31 31 11111 }

然后再次启动slave1的agent

//master
(py27) [root@master test_data]# echo '22222' >> exec.log
//slave1
18/10/25 10:58:21 INFO sink.LoggerSink: Event: { headers:{} body: 32 32 32 32 32 22222 }
//slave2
18/10/25 10:43:00 INFO ipc.NettyServer: [id: 0x8da012e3, /172.16.155.120:39726 => /172.16.155.122:52020] CONNECTED: /172.16.155.120:39726
18/10/25 10:56:53 INFO sink.LoggerSink: Event: { headers:{} body: 31 31 31 31 31 11111 }

欢迎关注公众号

Flume的介绍和简单操作的更多相关文章

  1. 进击的Python【第十二章】:mysql介绍与简单操作,sqlachemy介绍与简单应用

    进击的Python[第十二章]:mysql介绍与简单操作,sqlachemy介绍与简单应用 一.数据库介绍 什么是数据库? 数据库(Database)是按照数据结构来组织.存储和管理数据的仓库,每个数 ...

  2. HDFS介绍及简单操作

    目录 1.HDFS是什么? 2.HDFS设计基础与目标 3.HDFS体系结构 3.1 NameNode(NN)3.2 DataNode(DN)3.3 SecondaryNameNode(SNN)3.4 ...

  3. 金融量化分析【day110】:IPython介绍及简单操作

    一. IPython介绍 ipython是一个python的交互式shell,比默认的python shell好用得多,支持变量自动补全,自动缩进,支持bash shell命令,内置了许多很有用的功能 ...

  4. SecureCRT的安装、介绍、简单操作

    网上看到一篇名为<SecureCRT的使用方法和技巧(详细使用教程)>的secureCRT教程,可能软件版本与我不一样我安装的是8.1. 原文来源:http://www.jb51.net/ ...

  5. Git和Github的介绍、简单操作、冲突(上)

    目的:   1.git与github简介  2.Git与SVN区别 3.Github 的简单使用 4.下载安装Git-20-64-bit.exe   5.Git常用命令 5.1Git命令使用场景 5. ...

  6. jenkins介绍及其简单操作

    一.jenkins简介 Jenkins是一个开源软件项目,是基于Java开发的一种持续集成工具,用于监控持续重复的工作,旨在提供一个开放易用的软件平台,使软件的持续集成变成可能. Jenkins功能包 ...

  7. 【转载】salesforce 零基础开发入门学习(三)sObject简单介绍以及简单DML操作(SOQL)

    salesforce 零基础开发入门学习(三)sObject简单介绍以及简单DML操作(SOQL)   salesforce中对于数据库操作和JAVA等语言对于数据库操作是有一定区别的.salesfo ...

  8. 第一章 flume架构介绍

    1.flume概念介绍 1.1 常见的分布式日志收集系统                             Scribe是facebook开源的日志收集系统,在facebook内部已经得到大量的 ...

  9. Linq对XML的简单操作

    前两章介绍了关于Linq创建.解析SOAP格式的XML,在实际运用中,可能会对xml进行一些其它的操作,比如基础的增删该查,而操作对象首先需要获取对象,针对于DOM操作来说,Linq确实方便了不少,如 ...

随机推荐

  1. springDataJpa学习笔记

    目录 前言 springData 准备 引用 xml配置初始化JPA pojo dao层接口 使用 新增.修改:save 删除 查询所有 根据ID查询findById 命名规则查询(条件查询) 自定义 ...

  2. SQL Server中【case...end】的用法

    在SQL Server中 case...end 语句,一般有如下两种用法: 1.相当于C#中if...else,例: select CName,头衔=case when CLevel='A1' the ...

  3. Linux常用命令(一)————查找和替换

    1. 查找一个字符串 一个字符串是一行上的一个或几个字符.    为查找一个字符串,在vi命令模式下键入“/”,后面跟要查找的字符串,再按回车.vi将光标定位在该串下一次出现的地方上.键入n跳到该串的 ...

  4. kettle 合并记录

    转自: http://blog.itpub.net/post/37422/464323 看到别人的脚本用到 合并记录 步骤,学下下. 该步骤用于将两个不同来源的数据合并,这两个来源的数据分别为旧数据和 ...

  5. 乘风破浪:LeetCode真题_016_3Sum Closest

    乘风破浪:LeetCode真题_016_3Sum Closest 一.前言      这一次,问题又升级了,寻找的是三个数之和最靠近的某个数,这是非常让人难以思考的,需要把三个数相加之后和最后给的目标 ...

  6. Entity Framework:代码优先

    一.代码优先Code First EF6支持Oracle ODT 12C Release 3 (net4.5) DataModel(类)-->生成数据库DB 或 存在的数据库DB-->生成 ...

  7. 021.11 IO流 序列流

    序列流:SequenceInputStream特点:流对象有序排列解决问题:将多个输入流合并成一个输入流,将多个源合并成一个源,对于多个源的操作会变简单. 构造函数参数就是输入流,一初始化就合并了多个 ...

  8. Mac原生Terminal快速登录ssh

    1. 创建rsa key 在终端中输入以下命令: ssh-keygen -t rsa 完成之后可以在~/.ssh目录下找到公钥和私钥     如果你与我一样有使用gitlab,那么这个秘钥应该已经存在 ...

  9. 使用泛型和内部静态类实现栈(FILO,先进后出)

    package tuple; /** * 泛型实现的栈,FILO * @author Youjie * * @param <T> */ public class LinkedStack&l ...

  10. C/C++——new/delete和malloc/free的区别

    new/delete和malloc/free的区别 扩容操作: 对于malloc是有一个realloc函数对应用于扩容的: 对于new,只能再new一个,for循环赋值过去,把原来的delete掉: ...