P3327 [SDOI2015]约数个数和

神犇题解(转)

无话可补

#include<iostream>
#include<cstdio>
#include<cstring>
#define re register
using namespace std;
template<typename T>T max(T &a,T &b){return a>b?a:b;}
template<typename T>T min(T &a,T &b){return a<b?a:b;}
#define N 50001
int t,n,m,pct,pri[N],mu[N],sum[N];
long long g[N],ans;
bool v[N];
int main(){
mu[]=;
for(re int i=;i<N;++i){
if(!v[i]) pri[++pct]=i,mu[i]=-;
for(re int j=;j<=pct;++j){
re int tmp=i*pri[j];
if(tmp>=N) break;
v[tmp]=;
if(i%pri[j]) mu[tmp]=-mu[i];
else break;
}//线性筛
}re int u;
for(u=;u+<N;u+=){
sum[u]=sum[u-]+mu[u];
sum[u+]=sum[u]+mu[u+];
sum[u+]=sum[u+]+mu[u+];
sum[u+]=sum[u+]+mu[u+];
}//循环展开:微小加速
for(;u<N;++u) sum[u]=sum[u-]+mu[u];
for(re int i=;i<N;++i){
ans=;
for(re int l=,r;l<=i;l=r+){
r=i/(i/l);
ans+=1ll*(r-l+)*(i/l);
}g[i]=ans;
} scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
ans=;
for(re int l=,r;l<=n;l=r+){
r=min(n/(n/l),m/(m/l));
ans+=1ll*(sum[r]-sum[l-])*g[n/l]*g[m/l];
}printf("%lld\n",ans);
}return ;
}

P3327/bzoj3994 [SDOI2015]约数个数和(莫比乌斯反演)的更多相关文章

  1. BZOJ3994: [SDOI2015]约数个数和(莫比乌斯反演)

    Description  设d(x)为x的约数个数,给定N.M,求     Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Out ...

  2. P3327 [SDOI2015]约数个数和 莫比乌斯反演

    P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...

  3. 【BZOJ3994】[SDOI2015]约数个数和 莫比乌斯反演

    [BZOJ3994][SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组 ...

  4. [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)

    [BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...

  5. luogu P3327 [SDOI2015]约数个数和 莫比乌斯反演

    题面 我的做法基于以下两个公式: \[[n=1]=\sum_{d|n}\mu(d)\] \[\sigma_0(i*j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]\] 其中\(\ ...

  6. 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)

    题目描述 设d(x)为x的约数个数,给定N.M,求 \sum^N_{i=1}\sum^M_{j=1}d(ij)∑i=1N​∑j=1M​d(ij) 输入输出格式 输入格式: 输入文件包含多组测试数据.第 ...

  7. [SDOI2015]约数个数和 莫比乌斯反演

    ---题面--- 题解: 为什么SDOI这么喜欢莫比乌斯反演,,, 首先有一个结论$$d(ij) = \sum_{x|i}\sum_{y|j}[gcd(x, y) == 1]$$为什么呢?首先,可以看 ...

  8. BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]

    2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下 ...

  9. BZOJ 3994: [SDOI2015]约数个数和3994: [SDOI2015]约数个数和 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3994 https://blog.csdn.net/qq_36808030/article/deta ...

随机推荐

  1. 微信小程序实现文字跑马灯

    wxml: <view>1 显示完后再显示</view> <view class="example"> <view class=" ...

  2. 《C++ Primer Plus》15.4 RTTI 学习笔记

    运行时类型识别RTTI(Runtime Type Identification) C++有三个支持RTTI的元素.* 如果可能的话,dynamic_cast运算符将使用一个指向基类的指针来生成一个指向 ...

  3. 原来 CSS 与 JS 是这样阻塞 DOM 解析和渲染的

    hello~各位亲爱的看官老爷们大家好.估计大家都听过,尽量将CSS放头部,JS放底部,这样可以提高页面的性能.然而,为什么呢?大家有考虑过么?很长一段时间,我都是知其然而不知其所以然,强行背下来应付 ...

  4. php数据访问之查询关键字

    本文根据数据库中的car表做一个汽车查询页面,巩固php查询关键字操作,感兴趣的小伙伴们可以参考一下   本文实例为大家分享了php查询操作的实现代码,供大家参考,具体内容如下 一.一个关键字查询 主 ...

  5. cache buffers chains以及热块解决方案

    cache buffers chains以及热块解决方案 今天是2013-10-10,今天下午我调休了,中午饭过后从14点一直睡到16点,这种感觉真爽.  之前学习过关于buffer cache的ca ...

  6. js的声明提前

    由于js声明提前的作用,所以在js中后面定义的函数也可以再前面使用. 不过,项目中看到过这样的写法 var a = function(){}, b = function(){}; 这种写法使代码看上去 ...

  7. python的类继承与派生

    一.继承和派生简介: 其实是一个一个事物站在不同角度去看,说白了就是基于一个或几个类定义一个新的类.比如定义了动物类接着派生出了人类,你也可以说人类继承了动物类.一个意思.此外python类似于C和C ...

  8. 线段树(成段更新,区间求和lazy操作 )

    hdu1556 Color the ball Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  9. 170626、springboot编程之静态资源文件

    Spring Boot 默认为我们提供了静态资源处理,使用 WebMvcAutoConfiguration 中的配置各种属性. 建议大家使用Spring Boot的默认配置方式,如果需要特殊处理的再通 ...

  10. 报警告session_regenerate_id(): Failed to create(read) session ID: files (path: N;/path)

    php.ini文件中的session.save_path = "N;/path"注释掉(前面加分号)