自编码器是一种能够通过无监督学习,学到输入数据高效表示的人工神经网络。输入数据的这一高效表示称为编码(codings),其维度一般远小于输入数据,使得自编码器可用于降维(查看第八章)。更重要的是,自编码器可作为强大的特征检测器(feature detectors),应用于深度神经网络的预训练(查看第十一章)。此外,自编码器还可以随机生成与训练数据类似的数据,这被称作生成模型(generative model)。比如,可以用人脸图片训练一个自编码器,它可以生成新的图片。

自编码器通过简单地学习将输入复制到输出来工作。这一任务(就是输入训练数据, 再输出训练数据的任务)听起来似乎微不足道,但通过不同方式对神经网络增加约束,可以使这一任务变得极其困难。比如,可以限制内部表示的尺寸(这就实现降维了),或者对训练数据增加噪声并训练自编码器使其能恢复原有。这些限制条件防止自编码器机械地将输入复制到输出,并强制它学习数据的高效表示。简而言之,编码(就是输入数据的高效表示)是自编码器在一些限制条件下学习恒等函数(identity function)的副产品。(这句话有点抽象,不过看完15.1就明白了)

15.1 高效的数据表示

下面有两组数字,哪组更容易记忆呢?

  • 40, 27, 25, 36, 81, 57, 10, 73, 19, 68
  • 50, 25, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20

乍一看可能觉得第一行数字更容易记忆,毕竟更短。但仔细观察就会发现,第二组数字是有规律的:偶数后面是其二分之一,奇数后面是其三倍加一(这就是著名的hailstone sequence)。如果识别出了这一模式,第二组数据只需要记住这两个规则、第一个数字、以及序列长度。如果你的记忆能力超强,可以记住很长的随机数字序列,那你可能就不会去关心一组数字是否存在规律了。所以我们要对自编码器增加约束来强制它去探索数据中的模式。

记忆(memory)、感知(perception)、和模式匹配(pattern matching)的关系在1970s早期就被William Chase和Herbert Simon研究过。他们发现国际象棋大师观察棋盘5秒,就能记住所有棋子的位置,而常人是无法办到的。但棋子的摆放必须是实战中的棋局(也就是棋子存在规则,就像第二组数字),棋子随机摆放可不行(就像第一组数字)。象棋大师并不是记忆力优于我们,而是经验丰富,很擅于识别象棋模式,从而高效地记忆棋局。

和棋手的记忆模式类似,一个自编码器接收输入,将其转换成高效的内部表示,然后再输出输入数据的类似物。自编码器通常包括两部分:encoder(也称为识别网络)将输入转换成内部表示,decoder(也称为生成网络)将内部表示转换成输出。(如图15-1)

图15-1 象棋大师的记忆模式(左)和一个简单的自编码器

正如上图所示,自编码器的结构和多层感知机(查看第十章)类似,除了输入神经元和输出神经元的个数相等。在上图的例子中,自编码器只有一个包含两个神经元的隐层(encoder),以及包含3个神经元的输出层(decoder)。输出是在设法重建输入,损失函数是重建损失(reconstruction loss)。

由于内部表示(也就是隐层的输出)的维度小于输入数据(用2D取代了原来的3D), 这称为不完备自编码器(undercomplete autoencoder)。

undercomplete应该是个数学概率,不用深究了,毕竟在Wikipedia上面的解释只有一句话Describing a frame (in linear algebra) having a set of functions less than a basis

15.2 不完备线性自编码器实现PCA(Performing PCA with an Undercomplete Linear Autoencoder)

如果自编码器使用线性激活函数并且损失函数是均方差(Mean Squared Error,MSE),那它就可以用来实现主成分分析(查看第八章)。

下面的代码实现了一个简单的线性自编码器,将3D数据投影为2D:

import tensorflow as tf
from tensorflow.contrib.layers import fully_connected n_inputs = 3 # 3D inputs
n_hidden = 2 # 2D codings
n_outputs = n_inputs learning_rate = 0.01 X = tf.placeholder(tf.float32, shape=[None, n_inputs])
hidden = fully_connected(X, n_hidden, activation_fn=None)
outputs = fully_connected(hidden, n_outputs, activation_fn=None) reconstruction_loss = tf.reduce_mean(tf.square(outputs - X)) # MSE optimizer = tf.train.AdamOptimizer(learning_rate)
training_op = optimizer.minimize(reconstruction_loss) init = tf.global_variables_initializer()

然后载入数据集,在训练集上训练模型,并对测试集进行编码(也就是投影为2D):

X_train, X_test = [...] # load the dataset

n_iterations = 1000
codings = hidden # the output of the hidden layer provides the codings with tf.Session() as sess:
init.run()
for iteration in range(n_iterations):
training_op.run(feed_dict={X: X_train}) # no labels (unsupervised)
codings_val = codings.eval(feed_dict={X: X_test})

15.3 栈式自编码器(Stacked Autoencoders)

和其他的神经网络一样,自编码器可以有多个隐层,这被称作栈式自编码器(或者深度自编码器)。增加隐层可以学到更复杂的编码,但千万不能使自编码器过于强大。想象一下,一个encoder过于强大,它仅仅是学习将输入映射为任意数(然后decoder学习其逆映射)。很明显这一自编码器可以很好的重建数据,但它并没有在这一过程中学到有用的数据表示。(而且也不能推广到新的实例)

栈式自编码器的架构一般是关于中间隐层对称的,如图15-3所示。

图15-3 栈式自编码器

15.3.1 TensorFlow 实现

参考:本书代码

15.3.2 捆绑权重

如果一个自编码器的层次是严格轴对称的(如图15-3),一个常用的技术是将decoder层的权重捆绑到encoder层。这使得模型参数减半,加快了训练速度并降低了过拟合风险。具体的,假设自编码器一共有$N$层(不算输入层),$W_L$表示第$L$层的权重(例如,第一层是第一个隐层,第$\frac{2}{N}$层是编码层,第$N$层是输出层),那么decoder层的权重可以表示为$W_{N-L+1} = W_L^T \ , L = 1,2,\cdots ,\frac{N}{2}$。

不过偏置项不会捆绑。

15.3.3 一次训练一个自编码器

与之前训练整个栈式自编码器不同,可以训练多个浅层的自编码器,然后再将它们合并为一体,这样要快得多。如图15-4

图15-4 一次训练一个浅层自编码器

首先,第一个自编码器学习去重建输入。然后,第二个自编码器学习去重建第一个自编码器隐层的输出。最后,这两个自编码器被整合到一起,如图15-4。可以使用这种方式,创建一个很深的栈式自编码器。

另一个实现方法首先创建一个包含完整栈式编码器的图,然后再每一个训练时期增加额外的操作,如图15-5:

图15-5

其中,

  • 中间的一列是完整的栈式编码器,这部分在训练完成之后可以使用。
  • 左侧一列是最先需要训练的,它跳过第二和第三个隐层,直接创建一个输出层。这个输出层与栈式自编码器的输出层共享同样的权重和偏置。
  • 随后是右侧一列的训练。它使得第三个隐层的输出与第一个隐层的输出尽可能的接近。

15.4 使用栈式自编码器进行无监督预训练

正如第十一章所讨论的,如果我们要处理一个复杂的有监督学习问题又没有足够的标注数据,一个解决方案是找到一个解决类似任务的训练好的模型,复用低层。类似的,如果有一个很大的数据集但绝大部分是未标注数据,可以使用所有的数据先训练一个栈式自编码器,然后复用低层来完成真正的任务。如图15-8所示:

图15-8 使用自编码器进行无监督预训练

15.5 去噪自编码器

另一种强制自编码器学习有用特征的方式是最输入增加噪声,通过训练之后得到无噪声的输出。这防止了自编码器简单的将输入复制到输出,从而提取出数据中有用的模式。如图15-9左侧所示。

使用自编码器去燥的思想在1980s提出(比如,在1987年Yann LeCun的硕士论文中有所提及)。在一篇2008年的论文中,Pascal Vincent等人表明自编码器可用于特征提取。在一篇2010年的论文中,Vincent等人提出栈式去燥自编码器(stacked denoising autoencoders)。

噪声可以是添加到输入的纯高斯噪声,也可以是随机丢弃输入层的某个特征,类似于dropout。如图15-9右侧所示。

图15-9 图中自编码器,通过高斯噪声(左)或者Dropout(右)

第十五章——自编码器(Autoencoders)的更多相关文章

  1. 15第十五章UDF用户自定义函数(转载)

    15第十五章UDF用户自定义函数 待补上 原文链接 本文由豆约翰博客备份专家远程一键发布

  2. 《Linux命令行与shell脚本编程大全》 第十五章 学习笔记

    第十五章:控制脚本 处理信号 重温Linux信号 信号 名称 描述 1 HUP 挂起 2 INT 中断 3 QUIT 结束运行 9 KILL 无条件终止 11 SEGV 段错误 15 TERM 尽可能 ...

  3. CSS3秘笈复习:十三章&十四章&十五章&十六章&十七章

    第十三章 1.在使用浮动时,源代码的顺序非常重要.浮动元素的HTML必须处在要包围它的元素的HTML之前. 2.清楚浮动: (1).在外围div的底部添加一个清除元素:clear属性可以防止元素包围浮 ...

  4. Gradle 1.12用户指南翻译——第四十五章. 应用程序插件

    本文由CSDN博客貌似掉线翻译,其他章节的翻译请参见: http://blog.csdn.net/column/details/gradle-translation.html 翻译项目请关注Githu ...

  5. Gradle 1.12 翻译——第十五章. 任务详述

    有关其他已翻译的章节请关注Github上的项目:https://github.com/msdx/gradledoc/tree/1.12,或访问:http://gradledoc.qiniudn.com ...

  6. Gradle 1.12用户指南翻译——第二十五章. Scala 插件

    其他章节的翻译请参见: http://blog.csdn.net/column/details/gradle-translation.html 翻译项目请关注Github上的地址: https://g ...

  7. Gradle 1.12用户指南翻译——第三十五章. Sonar 插件

    本文由CSDN博客万一博主翻译,其他章节的翻译请参见: http://blog.csdn.net/column/details/gradle-translation.html 翻译项目请关注Githu ...

  8. “全栈2019”Java多线程第三十五章:如何获取线程被等待的时间?

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java多 ...

  9. “全栈2019”Java多线程第二十五章:生产者与消费者线程详解

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java多 ...

随机推荐

  1. [Xamarin.Android] 如何透過電子郵件部署Xamarin.Android App (转帖)

    Android App在部署到實機的時候不像iOS的App限制你一定要使用向Apple申請的開發者憑證,在Apple不管是你要上架到Apple Store或者是企業內部署,你都必須向蘋果申請憑證. 而 ...

  2. 谈谈数据库的ACID

    一.事务 定义:所谓事务,它是一个操作序列,这些操作要么都执行,要么都不执行,它是一个不可分割的工作单位. 准备工作:为了说明事务的ACID原理,我们使用银行账户及资金管理的案例进行分析. // 创建 ...

  3. MySQL3534

    1.mysqld install 2.mysqld --initialize-insecure自动生成无密码的root用户 3.mysql -uroot即可登录

  4. hibernate_annotation字段映射位置

    @Id private int id; private String name; private String wifeName; private Date birthDate; //Title是En ...

  5. 从var func=function 和 function func()区别谈Javascript的预解析机制

    var func=function 和 function func()在意义上没有任何不同,但其解释优先级不同:后者会先于同一语句级的其他语句. 即: { var k = xx(); function ...

  6. [问题解决]Android7.0上PopupWindow的showAsDropDown位置问题

    [问题解决]Android7.0上PopupWindow的showAsDropDown位置问题 /** * Created by diql on 2017/02/16. */ 问题说明 我的popup ...

  7. TortoiseGit学习系列之TortoiseGit基本操作克隆项目(图文详解)

    前面博客 全网最详细的Git学习系列之介绍各个Git图形客户端(Windows.Linux.Mac系统皆适用ing)(图文详解) 全网最详细的Git学习系列之安装各个Git图形客户端(Windows. ...

  8. java7之Special Methods

    1.关于<init>与<clinit> At the level of the Java Virtual Machine, every constructor written ...

  9. 大数乘法的C代码实现

    在C语言中,宽度最大的无符号整数类型是unsigned long long, 占8个字节.那么,如果整数超过8个字节,如何进行大数乘法呢? 例如: $ python Python 2.7.6 (def ...

  10. oracle获得日期与向oracle表中插入Date字符串原理解析

    工作中要用到 Oracle 9i,经常要向其中的某张表插入事件发生的日期及时间.专门就 Oracle 的日期及时间显示方式和插入方式记一笔. 像 Number,varchar2 等内置的数据类型一样, ...