题意:给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值其中k mod i表示k除以i的余数。例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7

题解k%i=k-\(\left\lfloor\frac{k}{i}\right\rfloor\) \(*i\),然后\(\left\lfloor\frac{k}{i}\right\rfloor\)只会有\(\sqrt{n}\)个取值,所以可以通过整除分块来一次性算出相同因子的贡献

/**************************************************************
Problem: 1257
User: walfy
Language: C++
Result: Accepted
Time:64 ms
Memory:1288 kb
****************************************************************/ //#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000003
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define fio ios::sync_with_stdio(false);cin.tie(0) using namespace std; const double eps=1e-6;
const int N=1000+10,maxn=1000000+10,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f; int main()
{
ll n,k,ans=0;
scanf("%lld%lld",&n,&k);
// ll ans1=0;
// for(ll i=1;i<=n;i++)ans1+=k%i;
// printf("%lld\n",ans1);
if(n>=k)
{
ans+=k*(n-k);
n=k-1;
}
ans+=n*k;
for(ll i=1,j;i<=n;i=j+1)
{
j=k/(k/i);
// cout<<i<<" "<<j<<" "<<k/i<<endl;
ll te=k/i;
ans-=te*(min(n,j)+i)*(min(n,j)-i+1)/2;
if(j>=n)break;
}
printf("%lld\n",ans);
return 0;
}
/******************** ********************/

bzoj1257: [CQOI2007]余数之和 整除分块的更多相关文章

  1. BZOJ1257: [CQOI2007]余数之和——整除分块

    题意 求 $\sum _{i=1}^n k \ mod \ i$($1\leq n,k\leq 10^9$). 分析 数据范围这么大 $O(n)$ 的复杂度也挺不住啊 根据取模的意义,$k \ mod ...

  2. Bzoj 1257 [CQOI2007]余数之和 (整除分块)

    Bzoj 1257 [CQOI2007]余数之和 (整除分块) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 一道简单题. 题目 ...

  3. bzoj1257[CQOI2007]余数之和(除法分块)

    1257: [CQOI2007]余数之和 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 6117  Solved: 2949[Submit][Statu ...

  4. BZOJ1257 [CQOI2007]余数之和 (数论分块)

    题意: 给定n, k,求$\displaystyle \sum_{i=1}^nk\;mod\;i$ n,k<=1e9 思路: 先转化为$\displaystyle \sum_{i=1}^n(k- ...

  5. BZOJ1257 CQOI2007 余数之和 【数分块】

    BZOJ1257 CQOI2007 余数之和 Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值 其中 ...

  6. bzoj千题计划173:bzoj1257: [CQOI2007]余数之和sum

    http://www.lydsy.com/JudgeOnline/problem.php?id=1257 k%i=k-int(k/i)*i 除法分块,对于相同的k/i用等差序列求和来做 #includ ...

  7. 51Nod 1225 余数之和 [整除分块]

    1225 余数之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 F(n) = (n % 1) + (n % 2) + (n % 3) + ... ...

  8. P2261 [CQOI2007]余数求和[整除分块]

    题目大意 给出正整数 n 和 k 计算 \(G(n, k)=k\ \bmod\ 1 + k\ \bmod\ 2 + k\ \bmod\ 3 + \cdots + k\ \bmod\ n\) 的值 其中 ...

  9. [CQOI2007] 余数求和 - 整除分块

    \(\sum_{i=1}^n\;k\;mod\;i\) Solution \(\sum_{i=1}^n\;k\;mod\;i\\=\sum_{i=1}^n(k-i\lfloor{\frac{k}{i} ...

随机推荐

  1. Feature extraction using convolution

    http://ufldl.stanford.edu/wiki/index.php/Feature_extraction_using_convolution http://ufldl.stanford. ...

  2. ios 开发failed to chmod

    当XCode遇到此问题的时候,可通过重启模拟器和XCode来解决 http://www.jianshu.com/p/f8e7c5949660 合并分支, xcode报错  couldn't load ...

  3. os模块os.walk() 方法和os.path.join()的简单使用

    os.walk:   http://www.runoob.com/python/os-walk.html os.path.join:   https://blog.csdn.net/zmdzbzbhs ...

  4. 转!!mysql 字段 is not null 和 字段 !=null

      今天在查询数据时,查到包含一条某个时间startTime(该字段默认为null ) 为null的记录,想把它过滤,加了 startTime != null 的条件,结果记录都没了,应该用条件 is ...

  5. UEM用户行为了如指掌!

    “千呼万唤始出来”,万众期待的UEM正式与宝宝们见面啦~~~ 今天很多人来问小编,Web咋不见了,表急,Web并没有消失,而是重磅升级为UEM啦!!! 什么是UEM呢?UEM全称User Experi ...

  6. django的request对象和response对象

    概述Django 使用 request 和 response 对象表示系统状态数据..当请求一个页面时,Django创建一个 HttpRequest 对象.该对象包含 request 的元数据. 然后 ...

  7. 洛谷P4428二进制 [BJOI2018] 线段树

    正解:线段树 解题报告: 传送门! 话说开始看到这题的时候我想得hin简单 因为关于%3有个性质就是说一个数的各个位数之和%3=这个数%3嘛,小学基础知识? 我就想着,就直接建一棵树,只是这棵树要用个 ...

  8. Ubuntu18.04下安装比特币客户端

    一.下载有两种安装方式:安装包和源码 二.安装1.通过安装包安装在https://bitcoin.org/en/download下载Windows,Mac OSX,Linux对应的安装包.安装过程比较 ...

  9. 如何在多个LinearLayout中添加分隔线

      1.可以放置一个ImageView组件,然后将其设为分隔线的颜色或图形.分隔线View的定义代码如下:   2.在Android3.0及以上版本,LinearLayout支持直接显示分隔线. an ...

  10. android读取通讯录和使用系统通讯录

    第一步:注册权限 <uses-permission android:name="android.permission.WRITE_CONTACTS" /> <us ...