Sightseeing
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 8707   Accepted: 3056

Description

Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.

Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.

There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.

Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:

  • One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.

  • M lines, each with three integers AB and L, separated by single spaces, with 1 ≤ AB ≤ NA ≠ B and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.

    The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.

  • One line with two integers S and F, separated by a single space, with 1 ≤ SF ≤ N and S ≠ F: the starting city and the final city of the route.

    There will be at least one route from S to F.

Output

For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.

Sample Input

2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1

Sample Output

3
2

Hint

The first test case above corresponds to the picture in the problem description.

Source


用dijkstra比较好,spfa可能有的重复
cnt相等时计数
注意是长度多1
 
//
// main.cpp
// poj3255
//
// Created by Candy on 9/14/16.
// Copyright 漏 2016 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring>
using namespace std;
const int N=,M=,INF=1e9+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x;
}
int t,n,m,u,v,w,s,f;
struct edge{
int v,w,ne;
}e[M];
int h[N],ecnt=;
inline void ins(int u,int v,int w){
ecnt++;
e[ecnt].v=v;e[ecnt].w=w;e[ecnt].ne=h[u];h[u]=ecnt;
}
int d[N][],vis[N][],cnt[N][];
struct hn{
int u,d,p;
hn(int a=,int b=,int c=):u(a),d(b),p(c){}
bool operator < (const hn &rhs)const{return d>rhs.d;}
};
void dijkstra(int s){
priority_queue<hn> q;
memset(vis,,sizeof(vis));
memset(cnt,,sizeof(cnt));
for(int i=;i<=n;i++) {d[i][]=d[i][]=INF;}
q.push(hn(s,,));
d[s][]=; cnt[s][]=;
while(!q.empty()){
hn now=q.top();q.pop();
int u=now.u,p=now.p;
if(vis[u][p]) continue;
vis[u][p]=;
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v,w=e[i].w;
if(d[v][]>d[u][p]+w){
d[v][]=d[v][];
cnt[v][]=cnt[v][];
d[v][]=d[u][p]+w;
cnt[v][]=cnt[u][p]; q.push(hn(v,d[v][],));
q.push(hn(v,d[v][],));
}else
if(d[v][]==d[u][p]+w){
cnt[v][]+=cnt[u][p];
}else
if(d[v][]>d[u][p]+w){
d[v][]=d[u][p]+w;
cnt[v][]=cnt[u][p];
q.push(hn(v,d[v][],));
}else
if(d[v][]==d[u][p]+w)
cnt[v][]+=cnt[u][p];
}
}
}
int main(int argc, const char * argv[]) {
t=read();
while(t--){
memset(h,,sizeof(h)); ecnt=;
n=read();m=read();
for(int i=;i<=m;i++){u=read();v=read();w=read();ins(u,v,w);}
s=read();f=read();
dijkstra(s);
if(d[f][]==d[f][]+) cnt[f][]+=cnt[f][];
printf("%d\n",cnt[f][]);
}
return ;
}

POJ3463Sightseeing[次短路计数]的更多相关文章

  1. 【SPFA】 最短路计数

    最短路计数 [问题描述]   给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. [输入格式]   输入第一行包含2个正整数N,M,为图的顶点数与边数. ...

  2. P1144 最短路计数

    P1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶 ...

  3. 洛谷P1144最短路计数题解

    最短路计数 此题还是寻找从1到i点总共有几个最短路且每条边的边长为1,对于这种寻找最短路的个数,我们可以反向搜索,即先用\(SPFA\)预处理出所有点的最短路,然后我们反向记忆化搜索,可以用\(sum ...

  4. 洛谷P1144 最短路计数(SPFA)

    To 洛谷.1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M ...

  5. 2018.11.05 NOIP模拟 规避(最短路计数)

    传送门 正难则反. 考虑计算两人相遇的方案数. 先正反跑一遍最短路计数. 然后对于一条在最短路上的边(u,v)(u,v)(u,v),如果(dis(s,u)*2<total&&di ...

  6. 洛谷 P1144 最短路计数 解题报告

    P1144 最短路计数 题目描述 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 第一行包含2个正 ...

  7. BZOJ1632: [Usaco2007 Feb]Lilypad Pond SPFA+最短路计数

    Description 为了让奶牛们娱乐和锻炼,农夫约翰建造了一个美丽的池塘.这个长方形的池子被分成了M行N列个方格(1≤M,N≤30).一些格子是坚固得令人惊讶的莲花,还有一些格子是岩石,其余的只是 ...

  8. 1491. [NOI2007]社交网络【最短路计数】

    Description 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子里有n个人,人与人之间有不同程度的关系.我们将这 ...

  9. 洛谷P1144 最短路计数 及其引申思考

    图论题目练得比较少,发一道spfa的板子题目- 题目:P1144 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: ...

随机推荐

  1. JavaScript的运动框架学习总结

    一.目录 1. 入门案例——实现匀速运动 2. 入门案例——实现缓冲运动 3. 实现任意值的运动框架v.1 4. 改进任意值的运动框架v.2 5. 改进任意值的运动框架v.3 6. 实现链式运动框架 ...

  2. PHP清理跨站XSS xss_clean 函数 整理自codeigniter Security

    PHP清理跨站XSS xss_clean 函数 整理自codeigniter Security 由Security Class 改编成函数xss_clean 单文件直接调用.BY吠品. //来自cod ...

  3. JavaScript学习笔记-对象

    枚举对象的属性:通常用for(...in...)来循环遍历,由于 for in 总是要遍历整个原型链,因此如果一个对象的继承层次太深的话会影响性能 for(var i in foo){ if(foo. ...

  4. jQuery.buildFragment源码分析以及在构造jQuery对象的作用

    这个方法在jQuery源码中比较靠后的位置出现,主要用于两处.1是构造jQuery对象的时候使用 2.是为DOM操作提供底层支持,这也就是为什么先学习它的原因.之前的随笔已经分析过jQuery的构造函 ...

  5. oracle中Window和Window Group

    参考文献: http://www.5ienet.com/note/html/scheduler/oracle-scheduler-using-window.shtml window概念 此Window ...

  6. 如何处理 android 方法总数超过 65536 . the number of method references in a .dex file exceed 64k

    一:问题描述:     应用中的Dex 文件方法数超过了最大值65536的上限,简单来说,应用爆棚了. 二.解决方案:      方案1:使用插件化框架  比如: https://github.com ...

  7. 优化MySchool数据库(三)

    使用T_SQL 编写业务逻辑: 如何定义及使用“变量”: ---- 让电脑帮我记住一个名字(王二) C#: string   name ;    [定义一个变量] name = "王二&qu ...

  8. iOS开发常用小技巧记录(持续更新)

    以下问题都是自己在项目中遇到的,解决问题的方法肯定有多种,我所列举的不一定就是最好的解决办法.如有问题欢迎大家指正,补充,交流. 解决同时按两个按钮进两个view的问题.[button setExcl ...

  9. Zend Studio 9.0.4 新建项目

    PHP IDE一直在用zendstudio5.5版 ,虽然写代码没啥问题,但官方版本已经到10了,尝试一下吧! 打开zend studio 10, FILE -> NEW -> PROJE ...

  10. DOM 节点操作

    一.获取节点 方法名 只能document调用 返回单一的值 返回动态集合 getElementById √ √ getElementsByTagName √ getElementsByClassNa ...