此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授。

PDF格式教材下载 Sequences and Series

本系列学习笔记PDF下载(Academia.edu) MOOCULUS-2 Solution

Summary

  • Suppose $(a_n)$ is a sequence with associated series $$\sum_{k=1}^\infty a_k$$ The sequence of partial sums associated to these objects is the sequence $$s_n = \sum_{k=1}^n a_k$$
  • Consider the series $$\sum_{k=1}^\infty a_k$$ This series converges if the sequence of partial sums $$s_n = \sum_{k=1}^n a_k$$ converges. More precisely, if $$\lim_{n \to \infty} s_n = L$$ we then write $$\sum_{k=1}^\infty a_k = L$$ and say, "the series $\sum_{k=1}^\infty a_k$ converges to $L$."
    If the sequence of partial sums diverges, we say that the series diverges.
  • A series of the form $$\sum_{k=0}^\infty a_0 \, r^k$$ is called a geometric series.
  • Suppose $a_0 \neq 0$. Then for a real number $r$ such that $|r| < 1$, the geometric series $$\sum_{k=0}^\infty a_0\, r^k$$ converges to $\frac{a_0}{1-r}$.
    For a real number $r$ where $|r| \geq 1$, the aforementioned geometric series diverges.
  • Consider the series $$\sum_{k=0}^\infty a_k$$ and suppose $c$ is a nonzero constant. Then $$\sum_{k=0}^\infty a_k$$ and $$\sum_{k=0}^\infty c\,a_k$$ share a common fate: either both series converge, or both series diverge.
    Moreover, when $$\sum_{k=0}^\infty a_k$$ converges, $$\sum_{k=0}^\infty c \, a_k = c \cdot \sum_{k=0}^\infty a_k$$
  • Suppose $$\sum_{k=0}^\infty a_k$$ and $$\sum_{k=0}^\infty b_k$$ are convergent series. Then $$\sum_{k=0}^\infty (a_k+b_k)$$ is convergent, and
    $$\sum_{k=0}^\infty (a_k+b_k)=\left( \sum_{k=0}^\infty a_k\right)+\left(\sum_{k=0}^\infty b_k\right)$$
  • If $$\sum_{k=0}^\infty a_k$$ converges then $$\lim_{n\to\infty}a_n=0$$
  • Consider the series $$\sum_{k=0}^\infty a_k$$ If the limit $$\lim_{n\to\infty}a_n$$ does not exist or has a value other than zero, then the series diverges.
    We'll usually call this theorem the "$n^{\text{th}}$ term test."
  • The series $$\sum_{n=1}^\infty {1\over n} = \frac{1}{1} +\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$ is called the harmonic series.
  • Consider the series $$\sum_{k=0}^\infty a_k$$ Assume the terms $a_k$ are non-negative. If the sequence of partial sums $s_n = a_0 + \cdots + a_n$ is bounded, then the series converges.
  • Comparison Test
    Suppose that $a_n$ and $b_n$ are non-negative for all $n$ and that, for some $N$, whenever $n \geq N$, we have $a_n \leq b_n$.
    If $$\sum_{n=0}^\infty b_n$$ converges, so does $$\sum_{n=0}^\infty a_n$$ If $$\sum_{n=0}^\infty a_n$$ diverges, so does $$\sum_{n=0}^\infty b_n$$
  • Cauchy Condensation Test
    Suppose $(a_n)$ is a non-increasing sequence of positive numbers. The series $$\sum_{n=1}^\infty a_n$$ converges if and only if the series $$\sum_{n=0}^\infty \left( 2^n a_{2^n} \right)$$ converges.
  • $p$-series Test
    $$\sum_{n=1}^{\infty} {1\over n^p}\ \begin{cases}\mbox{converges} & \mbox{when $p>1$}\\ \mbox{diverges} & \mbox{when $p\leq1$} \end{cases}$$

Exercises 2.7

1. Explain why $$\sum_{n=1}^\infty {n^2\over 2n^2+1}$$ diverges.

Solution:

By $n^{\text{th}}$ test, $$\lim_{n\to\infty} {n^2\over 2n^2+1}={1\over2}\neq0$$
Therefore it diverges.

2. Explain why $$\sum_{n=1}^\infty {5\over 2^{1/n}+14}$$ diverges.

Solution:

By $n^{\text{th}}$ test, $$\lim_{n\to\infty} {5\over 2^{1\over n}+14}={5\over1+14}={1\over3}\neq0$$ Thus it diverges.

3. Explain why $$\sum_{n=1}^\infty {3\over n}$$ diverges.

Solution:

$$\sum_{n=1}^\infty {3\over n}=3\cdot\sum_{n=1}^{\infty}{1\over n}$$ which is a harmonic series.

4. Compute $$\sum_{n=0}^\infty {4\over (-3)^n}- {3\over 3^n}$$

Solution:

Geometric series:
$$\sum_{n=0}^\infty {4\over (-3)^n}- {3\over 3^n}$$
$$=\sum_{n=0}^{\infty} 4\cdot(-{1\over3})^n-3\cdot({1\over3})^n$$
$$=4\cdot{1\over 1-(-{1\over3})}-3\cdot{1\over 1-{1\over3}}$$
$$=4\times{3\over4}-3\times{3\over2}=-{3\over2}$$

5. Compute $$\sum_{n=0}^\infty {3\over 2^n}+ {4\over 5^n}$$

Solution:

Geometric series:
$$\sum_{n=0}^\infty {3\over 2^n}+ {4\over 5^n}$$
$$= 3\cdot{1\over 1-{1\over2}}+4\cdot{1\over 1-{1\over5}}=6+5=11$$

6. Compute $$\sum_{n=0}^\infty {4^{n+1}\over 5^n}$$

Solution:
Geometric series:
$$\sum_{n=0}^\infty {4^{n+1}\over 5^n}$$
$$=\sum_{n=0}^{\infty}4\cdot({4\over5})^n=4\times{1\over 1-{4\over5}}=20$$

7. Compute $$\sum_{n=0}^\infty {3^{n+1}\over 7^{n+1}}$$

Solution:

Geometric series:
$$\sum_{n=0}^\infty {3^{n+1}\over 7^{n+1}}$$
$$=\sum_{n=0}^\infty {3\over7}\cdot{3^{n}\over 7^{n}}={3\over7}\times{1\over 1-{3\over7}}={3\over4}$$

8. Compute $$\sum_{n=1}^\infty \left({3\over 5}\right)^n$$

Solution:

Geometric series:
$$\sum_{n=1}^\infty \left({3\over 5}\right)^n$$
$$=\sum_{n=0}^\infty \left({3\over 5}\right)^n-1$$
$$={1\over 1-{3\over5}}-1={3\over2}$$
Alternatively, $$\sum_{n=1}^\infty \left({3\over 5}\right)^n={{3\over5}\over 1-{3\over5}}={3\over2}$$

9. Compute $$\sum_{n=1}^\infty {3^n\over 5^{n+1}}$$

Solution:

Geometric series:
$$\sum_{n=1}^\infty {3^n\over 5^{n+1}}$$
$$=\sum_{n=0}^\infty {1\over5}\cdot{3^n\over 5^{n}}-{1\over5}$$
$$={1\over5}\times{1\over 1-{3\over5}}-{1\over5}={3\over10}$$
Alternatively, $$\sum_{n=1}^\infty {3^n\over 5^{n+1}}={1\over5}\times{{3\over5}\over 1-{3\over5}}={3\over10}$$

Additional Exercises

1. Evaluate $$\sum_{n=5}^{\infty}(-{4\over7})^n$$

Solution:

Geometric series:
$$\sum_{n=5}^{\infty}(-{4\over7})^n={(-{4\over7})^5\over 1-(-{4\over7})}=-{1024\over26411}$$

2. Test $$\sum_{n=2}^{\infty}-8\cdot({6\over11})^n$$

Solution:

$$\sum_{n=2}^{\infty}-8\cdot({6\over11})^n=-8\cdot\sum_{n=2}^{\infty}({6\over11})^n$$ which is a geometric series and $r < 1$, therefore it converges.

3. Evaluate $$\sum_{i=2}^{\infty}{12\over 9i^2+21i+10}$$

Solution:

$$\sum_{i=2}^{\infty}{12\over 9i^2+21i+10}=\sum_{i=2}^{\infty}{12\over (3i+5) (3i+2)}$$
$$=\sum_{i=2}^{\infty}4\cdot({1\over 3i+2}-{1\over 3i+5})=4\times{1\over8}={1\over2}$$

4. Test $$\sum_{m=3}^{\infty}{(7m+5)\cdot(m-8)\over(5m+4)\cdot(5m-7)}$$

Solution:

By $n^{\text{th}}$ test: $$\lim_{m\to\infty}{(7m+5)\cdot(m-8)\over(5m+4)\cdot(5m-7)}={7\over25}\neq0$$
Thus it diverges.

5. Test $$\sum_{n=0}^{\infty}{5\over 7n+42}$$

Solution:

$$\sum_{n=0}^{\infty}{5\over 7n+42}={5\over7}\cdot\sum_{n=0}^{\infty}{1\over n+6}$$ which is a harmonic series. Thus it diverges.

6. Test $$\sum_{n=5}^{\infty}{2(n^2+2)\over 7^n}$$

Solution:

Comparison test:
$$\sum_{n=5}^{\infty}{2(n^2+2)\over 7^n}=\sum_{n=5}^{\infty}{2n^2+4\over 7^n}\leq\sum_{n=5}^{\infty}{2^n\over 7^n},\ \text{when}\ n\geq7$$
And $$\sum_{n=5}^{\infty}{2^n\over 7^n}=\sum_{n=5}^{\infty}({2\over7})^n$$
is a geometric series which is convergent. Thus $$\sum_{n=5}^{\infty}{2(n^2+2)\over 7^n}$$ is convergent, too.

MOOCULUS微积分-2: 数列与级数学习笔记 2. Series的更多相关文章

  1. MOOCULUS微积分-2: 数列与级数学习笔记 Review and Final

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  2. MOOCULUS微积分-2: 数列与级数学习笔记 7. Taylor series

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  3. MOOCULUS微积分-2: 数列与级数学习笔记 6. Power series

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  4. MOOCULUS微积分-2: 数列与级数学习笔记 5. Another comparison test

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  5. MOOCULUS微积分-2: 数列与级数学习笔记 4. Alternating series

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  6. MOOCULUS微积分-2: 数列与级数学习笔记 3. Convergence tests

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  7. MOOCULUS微积分-2: 数列与级数学习笔记 1. Sequences

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  8. 利用python数据分析panda学习笔记之Series

    1 Series a:类似一维数组的对象,每一个数据与之相关的数据标签组成 b:生成的左边为索引,不指定则默认从0开始. from pandas import Series,DataFrame imp ...

  9. 《Java学习笔记(第8版)》学习指导

    <Java学习笔记(第8版)>学习指导 目录 图书简况 学习指导 第一章 Java平台概论 第二章 从JDK到IDE 第三章 基础语法 第四章 认识对象 第五章 对象封装 第六章 继承与多 ...

随机推荐

  1. React Native开发技术周报2

    (1).资讯 1.React Native 0.22_rc版本发布 添加了热自动重载功能 (2).技术文章 1.用 React Native 设计的第一个 iOS 应用 我们想为用户设计一款移动端的应 ...

  2. STL中algorithm里的查找

    首先,选择查找算法时,区间是否排序是一个至关重要的因素.可以按是否需要排序区间分为两组: A. count,find B. binary_search,lower_bound,upper_bound, ...

  3. 个人阅读作业——M1/M2总结

    ~ http://www.cnblogs.com/wx1306/p/4831950.html 在这篇博客中,我提出来一些关于软件工程的问题,但随着这一个学期的即将结束,以及我对软件开发的了解的深入,我 ...

  4. Android下常见的四种对话框

    摘要:在实际开发过程有时为了能够和用户进行很好的交互,需要使用到对话框,在Android中常用的对话框有四种:普通对话框.单选对话框.多选对话框.进度对话框. 一.普度对话框 public void ...

  5. extjs5 一个容器中有几个组件公用一个控制器和一个模型

    Ext.define('TestViewModel', { extend: 'Ext.app.ViewModel', alias: 'viewmodel.test', // connects to v ...

  6. 【CodeVS 1199】【NOIP 2012】开车旅行

    http://codevs.cn/problem/1199/ 主要思想是倍增,对于第一个回答从后往前扫,依次插入平衡树中. 我写的splay,比较繁琐. #include<cmath> # ...

  7. 【BZOJ 1857】【SCOI 2010】传送带

    三分套三分,虽然简单,但是也得掌握,,, 时间复杂度$O(log_{1.5}^2 n)$ 一开始WA好几次发现是快速读入里没有return,这样也能过样例?_(:3J∠)_ #include<c ...

  8. mysql-函数if多值多结果判断

    if语句 案例:同样统计男女生人数,语句如下: ,)) 男生数,,)) 女生数, ,,)) pass1,,,)) pass0, ,,)) state1,,,)) state0 FROM sch GRO ...

  9. js-读取上传文件后缀

    /** * 读取文件后缀名称,并转化成小写 * @param file_name * @returns */ function houzuiToLowerCase(file_name) { if (f ...

  10. JavaScript的DOM操作-重点部分-第一部分

    Window.document 对象 一.找到元素 document.getElementById("id"); 根据id找,最多找一个: var a = document.get ...