RDD是什么?

RDD,全称是Reslilient Distributed Datasets,是一个容错的,并行的数据结构,可以让用户显式地将数据存储到磁盘和内存中,并能控制数据的分区。同时,RDD还提供了一组丰富的操作来操作这些数据。在这些操作中。诸如map,flatMap,filter等转换操作实现了monad模式,很好的契合了Scala的集合操作。除此之外,RDD还提供了诸如join,groupBy,reduceByKey等更为方便的操作,(注意:reduceByKey是action,而非transformation),以支持常见的数据运算。

通常来讲,针对数据处理有集中常见模型,包括:Iterative Algorithms,Relational Queries,MapReduce,Stream Processing。例如Hadoop MapReduce采用了MapReduces模型,Storm则采用了Stream Processing模型。RDD混合了这四种模型,使得Spark可以应用于各种大数据处理场景。

RDD作为数据结构,本质上是一个只读的分区记录集合。一个RDD可以包含多个分区,每个分区就是一个dataset片段。RDD可以相互依赖。如果RDD的每个分区最多只能被一个Child RDD的一个分区使用,则称之为narrow dependency;若多个Child RDD分区都可以依赖,则称之为wide dependency。不同的操作依据其特性。,可以回产生不同的依赖。例如map操作会产生narrow dependency.而join操作则参数wide dependency.

Spark之所以将依赖分为narrow和wide.基于两点原因。

首先,narrow dependencies可以支持在同一个cluster node上以管道形式执行多条命令,例如在执行了map后,紧接着执行filter。相反,wide dependecies需要所有的福分区都是可用的,可能还需要调用雷速MapReduce之类的操作进行跨节点传递。

其次,则是从失败恢复的角度考虑。narrow dependencies的失败恢复更有效,因为它只需要重新计算丢失的parent partition即可,而且可以并行地在不同节点进行重计算。而wide dependencies牵涉到RDD各级的多个Parent Partitions。下图说明了narrow dependencies与wide dependencies之间的区别:

深入理解Spark RDD的更多相关文章

  1. 理解Spark RDD中的aggregate函数(转)

    针对Spark的RDD,API中有一个aggregate函数,本人理解起来费了很大劲,明白之后,mark一下,供以后参考. 首先,Spark文档中aggregate函数定义如下 def aggrega ...

  2. 深入源码理解Spark RDD的数据分区原理

    通过内存创建RDD的分区设置 1.示例代码 在创建RDD的时候,我们可以从内存中进行创建:输出保存为文件.为了演示效果,我们的示例代码如下: import org.apache.spark.{Spar ...

  3. Spark RDD初探(一)

    本文概要 本文主要从以下几点阐述RDD,了解RDD 什么是RDD? 两种RDD创建方式 向给spark传递函数Passing Functions to Spark 两种操作之转换Transformat ...

  4. Spark RDD aggregateByKey

    aggregateByKey 这个RDD有点繁琐,整理一下使用示例,供参考 直接上代码 import org.apache.spark.rdd.RDD import org.apache.spark. ...

  5. 《深入理解Spark:核心思想与源码分析》(第2章)

    <深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析> ...

  6. Spark RDD概念学习系列之RDD的转换(十)

    RDD的转换 Spark会根据用户提交的计算逻辑中的RDD的转换和动作来生成RDD之间的依赖关系,同时这个计算链也就生成了逻辑上的DAG.接下来以“Word Count”为例,详细描述这个DAG生成的 ...

  7. Spark RDD概念学习系列之RDD的checkpoint(九)

     RDD的检查点 首先,要清楚.为什么spark要引入检查点机制?引入RDD的检查点?  答:如果缓存丢失了,则需要重新计算.如果计算特别复杂或者计算耗时特别多,那么缓存丢失对于整个Job的影响是不容 ...

  8. Spark RDD概念学习系列之RDD是什么?(四)

       RDD是什么? 通俗地理解,RDD可以被抽象地理解为一个大的数组(Array),但是这个数组是分布在集群上的.详细见  Spark的数据存储 Spark的核心数据模型是RDD,但RDD是个抽象类 ...

  9. Spark RDD概念学习系列之RDD的依赖关系(宽依赖和窄依赖)(三)

    RDD的依赖关系?   RDD和它依赖的parent RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency). 1)窄依赖指的是每 ...

随机推荐

  1. HTML DOM domain 属性

    定义和用法 domain 属性可返回下载当前文档的服务器域名. 语法 document.domain 说明 该属性是一个只读的字符串,包含了载入当前文档的 web 服务器的主机名. 提示和注释 提示: ...

  2. 数据结构:后缀自动机 WJMZBMR讲稿的整理和注释

    链接放在这里,有点难理解,至少我个人是的. 后缀自动机是一种有限状态自动机,其功能是识别字符串是否是母串的后缀.它能解决的问题当然不仅仅是判断是不是后缀这种事,跟字符串的连续子串有关的问题都可以往这个 ...

  3. Iterable(迭代器)的用法

    一.前言 在开发中,经常使用的还是for-each循环来遍历来Collection,不经常使用Iterable(迭代器)的,下面记录一下terable是一般用法: 二.说明 迭代器是一种设计模式,它是 ...

  4. 元件供应商泄露情报,微软或在研发HoloLens二代

    众所周知,微软HoloLens全息影像头盔在2015年1月22日推出,到目前为止将近两年时间,那微软会何时推出新版Hololen呢?对此,591ARVR资讯网www.591arvr.com小编特别关注 ...

  5. hdu1251 统计难题 字典树

    Problem Description Ignatius最近遇到一个难题,老师交给他很多单词(只有小写字母组成,不会有重复的单词出现),现在老师要他统计出以某个字符串为前缀的单词数量(单词本身也是自己 ...

  6. HttpLuaModule 获取Get和Post参数

    Get方式: local id = tostring(ngx.var.arg_id) local type = tostring(ngx.var.arg_type) Post方式: ngx.req.r ...

  7. codeforces round #234B(DIV2) C Inna and Huge Candy Matrix

    #include <iostream> #include <vector> #include <algorithm> #include <utility> ...

  8. 1204. Maze Traversal

    1204.   Maze Traversal A common problem in artificial intelligence is negotiation of a maze. A maze ...

  9. nodeJS中exports和mopdule.exports的区别

    每一个node.js执行文件,都自动创建一个module对象,同时,module对象会创建一个叫exports的属性,初始化的值是 {} module.exports = {}; Node.js为了方 ...

  10. OpenFileDialog获取文件名和文件路径问题

    OpenFileDialog获取文件名和文件路径问题(转) 转自:http://blog.sina.com.cn/s/blog_7511914e0101cbjn.html System.IO.Path ...