D. Happy Tree Party
 
 

Bogdan has a birthday today and mom gave him a tree consisting of n vertecies. For every edge of the tree i, some number xi was written on it. In case you forget, a tree is a connected non-directed graph without cycles. After the present was granted, m guests consecutively come to Bogdan's party. When the i-th guest comes, he performs exactly one of the two possible operations:

  1. Chooses some number yi, and two vertecies ai and bi. After that, he moves along the edges of the tree from vertex ai to vertex biusing the shortest path (of course, such a path is unique in the tree). Every time he moves along some edge j, he replaces his current number yi by , that is, by the result of integer division yi div xj.
  2. Chooses some edge pi and replaces the value written in it xpi by some positive integer ci < xpi.

As Bogdan cares about his guests, he decided to ease the process. Write a program that performs all the operations requested by guests and outputs the resulting value yi for each i of the first type.

Input
 

The first line of the input contains integers, n and m (2 ≤ n ≤ 200 000, 1 ≤ m ≤ 200 000) — the number of vertecies in the tree granted to Bogdan by his mom and the number of guests that came to the party respectively.

Next n - 1 lines contain the description of the edges. The i-th of these lines contains three integers uivi and xi (1 ≤ ui, vi ≤ nui ≠ vi,1 ≤ xi ≤ 1018), denoting an edge that connects vertecies ui and vi, with the number xi initially written on it.

The following m lines describe operations, requested by Bogdan's guests. Each description contains three or four integers and has one of the two possible forms:

  • ai bi yi corresponds to a guest, who chooses the operation of the first type.
  • pi ci corresponds to a guests, who chooses the operation of the second type.

It is guaranteed that all the queries are correct, namely 1 ≤ ai, bi ≤ n, 1 ≤ pi ≤ n - 1, 1 ≤ yi ≤ 1018 and 1 ≤ ci < xpi, where xpirepresents a number written on edge pi at this particular moment of time that is not necessarily equal to the initial value xpi, as some decreases may have already been applied to it. The edges are numbered from 1 to n - 1 in the order they appear in the input.

 
Output
 

For each guest who chooses the operation of the first type, print the result of processing the value yi through the path from ai to bi.

Examples
input
 
6 6
1 2 1
1 3 7
1 4 4
2 5 5
2 6 2
1 4 6 17
2 3 2
1 4 6 17
1 5 5 20
2 4 1
1 5 1 3
output
 
2
4
20
3
题意 :
  给你 一棵树
  m次询问
  每次询问有两种 1:a,b,z
  在a到b这条路径是上 求出 所有边权为x1,x2,x3...... 那么求出 [[[z/x1]/x2]/x3]

  2 x y,把第x条边的边权改为y

题解:
  我们把边权为1的 边 全部缩掉
  那么 z最多 除 60几次 
  用并查集就可以缩了,两个点靠近的时候 和LCA向上走 姿势差不多
 
  或者树链剖分 对于一条链的边权修改 及 乘积我们用线段树维护也是比较裸
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std; #pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 2e5+, M = 5e5+, inf = 2e9, mod = ; LL c[N];
int head[N],t = , fv[N], f[N], deep[N], n, m, pa[N];
struct edge{int to,next,id;}e[N * ];
struct Line {
int x,y;
LL z;
Line(int x = , int y = , int z = ) : x (x), y (y), z (z) {}
}L[N];
void add(int u,int v,int id) {e[t].next = head[u];e[t].to = v;e[t].id = id; head[u] = t++; } int finds(int x) {return x == pa[x]? pa[x]:pa[x] = finds(pa[x]);} void update(int u,int to) {
fv[to] = fv[u];
f[to] = f[u];
}
void dfs(int u,int fa) {
deep[u] = deep[fa] + ;
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(to == fa) continue;
fv[to] = e[i].id;
f[to] = u;
if(c[e[i].id] == ) {
pa[to] = finds(u);
update(u,to);
}
dfs(to,u);
}
} LL Lca(int u,int v,LL res) {
u = finds(u);
v = finds(v);
while(u != v) {
if(deep[u] < deep[v]) swap(u,v);
// cout<<deep[u]<<" "<<deep[v]<<" "<<fv[u]<<" "<<c[fv[u]]<<endl;
res /= c[fv[u]];
if(res == ) return res;
u = finds(f[u]);
}
return res;
}
int main() {
scanf("%d%d",&n,&m);
for(int i = ; i <= n; ++i) pa[i] = i;
for(int i = ; i < n; ++i) {
int a,b;
scanf("%d%d%I64d",&a,&b,&c[i]);
add(a,b,i);add(b,a,i);
L[i] = Line(a,b,c[i]);
} c[] = ;
fv[] = ;
f[] = ; dfs(,);
while(m --) {
int op, x;
LL z,y;
scanf("%d%d%I64d",&op,&x,&y);
if(op == ) {
scanf("%I64d",&z);
LL res = Lca(x,y,z);
printf("%I64d\n",res);
}
else {
c[x] = y;
int u = L[x].x;
int v = L[x].y;
if(deep[u] < deep[v]) swap(u,v);
if(c[x] == ) {
pa[u] = finds(v);
update(v,u);
}
}
}
}

树链剖分

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std; #pragma comment(linker, "/STACK:102400000,102400000") #define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define root 1,2,n
#define lson ls , ll , mid
#define rson rs , mid + 1 , rr #define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+200LL;
const double Pi = acos(-1.0);
const int N = 2e5+, M = 5e5+, inf = 2e9, mod = ; LL sum[N << ],val[N << ];
int head[N], t = , tot, deep[N], top[N], f[N], siz[N], son[N], pos[N << ];
int n,m;
struct edge{int to,next;LL value;}e[N * ];
struct Line{
int x,y;LL z;
Line(int x = , int y = , LL z = ) : x(x), y(y), z(z) {}
}L[N];
void add(int u,int v) {e[t].next=head[u];e[t].to=v;head[u]=t++;}
void dfs1(int u,int fa) {
siz[u] = ;son[u] = ;
deep[u] = deep[fa] + ;
f[u] = fa;
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(to == fa) continue;
dfs1(to,u);
siz[u] += siz[to];
if(siz[to] > siz[son[u]]) son[u] = to;
}
}
void dfs2(int u,int chan) {
top[u] = son[chan] == u? top[chan] : u;
pos[u] = ++tot;
if(son[u]) dfs2(son[u],u);
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(to == son[u] || to == chan) continue;
dfs2(to,u);
}
}
void push_up(int i) {
if(log(sum[ls]*1.0) + log(sum[rs] * 1.0) > log(INF * 1.0))
sum[i] = INF;
else sum[i] = sum[ls] * sum[rs];
}
void build(int i,int ll,int rr) {
if(ll == rr) {
sum[i] = val[ll];
return ;
}
build(lson), build(rson);
push_up(i);
}
void update(int i,int ll,int rr,int x,LL c)
{
if(ll == x && rr == x) {
sum[i] = c;
return ;
}
if(x <= mid) update(lson,x,c);
else update(rson,x,c);
push_up(i);
} LL query(int i,int ll,int rr,int x,int y) {
if(ll == x && rr == y) return sum[i];
if(y <= mid) return query(lson,x,y);
else if(x > mid) return query(rson,x,y);
else {
LL fi = query(lson,x,mid);
LL se = query(rson,mid+,y);
if(log(fi*1.0) + log(se * 1.0) > log(INF * 1.0)) {
return INF;
}
else return fi*se;
}
} LL sub_query(int x,int y,LL res) {
while(top[x] != top[y]) {
if(deep[top[x]] < deep[top[y]]) swap(x,y);
// cout<<pos[top[x]]<<" "<<pos[x]<<endl;
res /= query(root,pos[top[x]],pos[x]);
if(res == ) return ;
x = f[top[x]];
}
if(x == y) return res;
if(deep[x] < deep[y]) swap(x,y);
// cout<<query(root,pos[y]+1,pos[x])<<endl;
return res / query(root,pos[y]+,pos[x]);
} int main () {
scanf("%d%d",&n,&m);
for(int i = ; i <= n-; ++i) {
int a,b;
LL c;
scanf("%d%d%I64d",&a,&b,&c);
add(a,b);
add(b,a);
L[i] = Line(a,b,c);
}
dfs1(,);
dfs2(,);
for(int i = ; i < n; ++i) {
if(deep[L[i].x] < deep[L[i].y]) swap(L[i].x,L[i].y);
val[pos[L[i].x]] = L[i].z;
}
build(root);
while(m--) {
int op,x;
LL y,z;
scanf("%d%d%I64d",&op,&x,&y);
if(op == ) {
scanf("%I64d",&z);
printf("%I64d\n",sub_query(x,y,z));
}else {
update(root,pos[L[x].x],y);
}
}
}

Codeforces Round #329 (Div. 2) D. Happy Tree Party LCA/树链剖分的更多相关文章

  1. Codeforces Round #329 (Div. 2) D. Happy Tree Party(LCA+并查集)

    题目链接 题意:就是给你一颗这样的树,用一个$y$来除以两点之间每条边的权值,比如$3->7$,问最后的y的是多少,修改操作是把权值变成更小的. 这个$(y<=10^{18})$除的权值如 ...

  2. Codeforces Round #329 (Div. 2) D. Happy Tree Party 树链剖分

    D. Happy Tree Party Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/593/p ...

  3. Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+ 树状数组或线段树

    C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...

  4. Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+树状数组

    C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...

  5. Count on a tree SPOJ 10628 主席树+LCA(树链剖分实现)(两种存图方式)

    Count on a tree SPOJ 10628 主席树+LCA(树链剖分实现)(两种存图方式) 题外话,这是我第40篇随笔,纪念一下.<( ̄︶ ̄)↗[GO!] 题意 是说有棵树,每个节点上 ...

  6. Codeforces Round #200 (Div. 1) D Water Tree 树链剖分 or dfs序

    Water Tree 给出一棵树,有三种操作: 1 x:把以x为子树的节点全部置为1 2 x:把x以及他的所有祖先全部置为0 3 x:询问节点x的值 分析: 昨晚看完题,马上想到直接树链剖分,在记录时 ...

  7. Codeforces Round #200 (Div. 1) D. Water Tree 树链剖分+线段树

    D. Water Tree time limit per test 4 seconds memory limit per test 256 megabytes input standard input ...

  8. Codeforces Round #200 (Div. 1)D. Water Tree

    简单的树链剖分+线段树 #include<bits\stdc++.h> using namespace std; #define pb push_back #define lson roo ...

  9. CF 504E Misha and LCP on Tree——后缀数组+树链剖分

    题目:http://codeforces.com/contest/504/problem/E 树链剖分,把重链都接起来,且把每条重链的另一种方向的也都接上,在这个 2*n 的序列上跑后缀数组. 对于询 ...

随机推荐

  1. Window 下 Qt5 使用QMediaplayer 进行视频播放 流播放问题

    int main(int argc, char *argv[]) { QApplication a(argc, argv); QWidget *widget = new QWidget; widget ...

  2. spring boot redis缓存JedisPool使用

    spring boot redis缓存JedisPool使用 添加依赖pom.xml中添加如下依赖 <!-- Spring Boot Redis --> <dependency> ...

  3. centos 7 升级后yum install出现Exiting on user cancel

    centos 7 升级后yum install出现Exiting on user cancel centos 7.x升级后用yum install进行安装时经常出现Exiting on user ca ...

  4. jquery checkbox 限制多选的个数

    2015年11月6日 16:32:49 选中第四个的时候提示超过了3个, 点解alert框取消后, 将最后一个选中的checkbox取消选中 <script> $(document).re ...

  5. JStorm集群的部署

    JStorm是一个类似Hadoop MapReduce的系统,不同的是JStorm是一套基于流水线的消息处理机制,是阿里基于Storm优化的版本,和Storm一样是一个分布式实时计算的系统,从开发角度 ...

  6. PL/Proxy介绍

    PL/Proxy 介绍 一.概述 1.PL/Proxy 是一个采用PL Language语言的数据库分区系统. 目的:轻松访问分区数据库 它的理念是代理远程函数体内指定.函数调用同样标签创建的函数,所 ...

  7. class-dump获取iOS私有api

    转自:http://blog.csdn.net/sunyuanyang625/article/details/41440167 获取各类iOS私有api 安装工具class-dump 资源地址http ...

  8. 《Thinking in Java》十四章类型信息_习题解

    1~10    Page 318 练习1. 在ToyTest.java中,将Toy的默认构造器注释掉,并解释发生的现象. 书中代码如下(略有改动): package org.cc.foo_008; p ...

  9. Django搭建简易博客

    Django简易博客,主要实现了以下功能 连接数据库 创建超级用户与后台管理 利用django-admin-bootstrap美化界面 template,view与动态URL 多说评论功能 Markd ...

  10. codevs 2530大质数

    链接:http://codevs.cn/problem/1530/ 解题思路: 这个题最关键的剪枝还是 因子小于平方根,但不是像原来那样用. 逆转思维,与其说判断哪些是质数,不如说判断哪些不是质数,更 ...