D. Happy Tree Party
 
 

Bogdan has a birthday today and mom gave him a tree consisting of n vertecies. For every edge of the tree i, some number xi was written on it. In case you forget, a tree is a connected non-directed graph without cycles. After the present was granted, m guests consecutively come to Bogdan's party. When the i-th guest comes, he performs exactly one of the two possible operations:

  1. Chooses some number yi, and two vertecies ai and bi. After that, he moves along the edges of the tree from vertex ai to vertex biusing the shortest path (of course, such a path is unique in the tree). Every time he moves along some edge j, he replaces his current number yi by , that is, by the result of integer division yi div xj.
  2. Chooses some edge pi and replaces the value written in it xpi by some positive integer ci < xpi.

As Bogdan cares about his guests, he decided to ease the process. Write a program that performs all the operations requested by guests and outputs the resulting value yi for each i of the first type.

Input
 

The first line of the input contains integers, n and m (2 ≤ n ≤ 200 000, 1 ≤ m ≤ 200 000) — the number of vertecies in the tree granted to Bogdan by his mom and the number of guests that came to the party respectively.

Next n - 1 lines contain the description of the edges. The i-th of these lines contains three integers uivi and xi (1 ≤ ui, vi ≤ nui ≠ vi,1 ≤ xi ≤ 1018), denoting an edge that connects vertecies ui and vi, with the number xi initially written on it.

The following m lines describe operations, requested by Bogdan's guests. Each description contains three or four integers and has one of the two possible forms:

  • ai bi yi corresponds to a guest, who chooses the operation of the first type.
  • pi ci corresponds to a guests, who chooses the operation of the second type.

It is guaranteed that all the queries are correct, namely 1 ≤ ai, bi ≤ n, 1 ≤ pi ≤ n - 1, 1 ≤ yi ≤ 1018 and 1 ≤ ci < xpi, where xpirepresents a number written on edge pi at this particular moment of time that is not necessarily equal to the initial value xpi, as some decreases may have already been applied to it. The edges are numbered from 1 to n - 1 in the order they appear in the input.

 
Output
 

For each guest who chooses the operation of the first type, print the result of processing the value yi through the path from ai to bi.

Examples
input
 
6 6
1 2 1
1 3 7
1 4 4
2 5 5
2 6 2
1 4 6 17
2 3 2
1 4 6 17
1 5 5 20
2 4 1
1 5 1 3
output
 
2
4
20
3
题意 :
  给你 一棵树
  m次询问
  每次询问有两种 1:a,b,z
  在a到b这条路径是上 求出 所有边权为x1,x2,x3...... 那么求出 [[[z/x1]/x2]/x3]

  2 x y,把第x条边的边权改为y

题解:
  我们把边权为1的 边 全部缩掉
  那么 z最多 除 60几次 
  用并查集就可以缩了,两个点靠近的时候 和LCA向上走 姿势差不多
 
  或者树链剖分 对于一条链的边权修改 及 乘积我们用线段树维护也是比较裸
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std; #pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 2e5+, M = 5e5+, inf = 2e9, mod = ; LL c[N];
int head[N],t = , fv[N], f[N], deep[N], n, m, pa[N];
struct edge{int to,next,id;}e[N * ];
struct Line {
int x,y;
LL z;
Line(int x = , int y = , int z = ) : x (x), y (y), z (z) {}
}L[N];
void add(int u,int v,int id) {e[t].next = head[u];e[t].to = v;e[t].id = id; head[u] = t++; } int finds(int x) {return x == pa[x]? pa[x]:pa[x] = finds(pa[x]);} void update(int u,int to) {
fv[to] = fv[u];
f[to] = f[u];
}
void dfs(int u,int fa) {
deep[u] = deep[fa] + ;
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(to == fa) continue;
fv[to] = e[i].id;
f[to] = u;
if(c[e[i].id] == ) {
pa[to] = finds(u);
update(u,to);
}
dfs(to,u);
}
} LL Lca(int u,int v,LL res) {
u = finds(u);
v = finds(v);
while(u != v) {
if(deep[u] < deep[v]) swap(u,v);
// cout<<deep[u]<<" "<<deep[v]<<" "<<fv[u]<<" "<<c[fv[u]]<<endl;
res /= c[fv[u]];
if(res == ) return res;
u = finds(f[u]);
}
return res;
}
int main() {
scanf("%d%d",&n,&m);
for(int i = ; i <= n; ++i) pa[i] = i;
for(int i = ; i < n; ++i) {
int a,b;
scanf("%d%d%I64d",&a,&b,&c[i]);
add(a,b,i);add(b,a,i);
L[i] = Line(a,b,c[i]);
} c[] = ;
fv[] = ;
f[] = ; dfs(,);
while(m --) {
int op, x;
LL z,y;
scanf("%d%d%I64d",&op,&x,&y);
if(op == ) {
scanf("%I64d",&z);
LL res = Lca(x,y,z);
printf("%I64d\n",res);
}
else {
c[x] = y;
int u = L[x].x;
int v = L[x].y;
if(deep[u] < deep[v]) swap(u,v);
if(c[x] == ) {
pa[u] = finds(v);
update(v,u);
}
}
}
}

树链剖分

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std; #pragma comment(linker, "/STACK:102400000,102400000") #define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define root 1,2,n
#define lson ls , ll , mid
#define rson rs , mid + 1 , rr #define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+200LL;
const double Pi = acos(-1.0);
const int N = 2e5+, M = 5e5+, inf = 2e9, mod = ; LL sum[N << ],val[N << ];
int head[N], t = , tot, deep[N], top[N], f[N], siz[N], son[N], pos[N << ];
int n,m;
struct edge{int to,next;LL value;}e[N * ];
struct Line{
int x,y;LL z;
Line(int x = , int y = , LL z = ) : x(x), y(y), z(z) {}
}L[N];
void add(int u,int v) {e[t].next=head[u];e[t].to=v;head[u]=t++;}
void dfs1(int u,int fa) {
siz[u] = ;son[u] = ;
deep[u] = deep[fa] + ;
f[u] = fa;
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(to == fa) continue;
dfs1(to,u);
siz[u] += siz[to];
if(siz[to] > siz[son[u]]) son[u] = to;
}
}
void dfs2(int u,int chan) {
top[u] = son[chan] == u? top[chan] : u;
pos[u] = ++tot;
if(son[u]) dfs2(son[u],u);
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(to == son[u] || to == chan) continue;
dfs2(to,u);
}
}
void push_up(int i) {
if(log(sum[ls]*1.0) + log(sum[rs] * 1.0) > log(INF * 1.0))
sum[i] = INF;
else sum[i] = sum[ls] * sum[rs];
}
void build(int i,int ll,int rr) {
if(ll == rr) {
sum[i] = val[ll];
return ;
}
build(lson), build(rson);
push_up(i);
}
void update(int i,int ll,int rr,int x,LL c)
{
if(ll == x && rr == x) {
sum[i] = c;
return ;
}
if(x <= mid) update(lson,x,c);
else update(rson,x,c);
push_up(i);
} LL query(int i,int ll,int rr,int x,int y) {
if(ll == x && rr == y) return sum[i];
if(y <= mid) return query(lson,x,y);
else if(x > mid) return query(rson,x,y);
else {
LL fi = query(lson,x,mid);
LL se = query(rson,mid+,y);
if(log(fi*1.0) + log(se * 1.0) > log(INF * 1.0)) {
return INF;
}
else return fi*se;
}
} LL sub_query(int x,int y,LL res) {
while(top[x] != top[y]) {
if(deep[top[x]] < deep[top[y]]) swap(x,y);
// cout<<pos[top[x]]<<" "<<pos[x]<<endl;
res /= query(root,pos[top[x]],pos[x]);
if(res == ) return ;
x = f[top[x]];
}
if(x == y) return res;
if(deep[x] < deep[y]) swap(x,y);
// cout<<query(root,pos[y]+1,pos[x])<<endl;
return res / query(root,pos[y]+,pos[x]);
} int main () {
scanf("%d%d",&n,&m);
for(int i = ; i <= n-; ++i) {
int a,b;
LL c;
scanf("%d%d%I64d",&a,&b,&c);
add(a,b);
add(b,a);
L[i] = Line(a,b,c);
}
dfs1(,);
dfs2(,);
for(int i = ; i < n; ++i) {
if(deep[L[i].x] < deep[L[i].y]) swap(L[i].x,L[i].y);
val[pos[L[i].x]] = L[i].z;
}
build(root);
while(m--) {
int op,x;
LL y,z;
scanf("%d%d%I64d",&op,&x,&y);
if(op == ) {
scanf("%I64d",&z);
printf("%I64d\n",sub_query(x,y,z));
}else {
update(root,pos[L[x].x],y);
}
}
}

Codeforces Round #329 (Div. 2) D. Happy Tree Party LCA/树链剖分的更多相关文章

  1. Codeforces Round #329 (Div. 2) D. Happy Tree Party(LCA+并查集)

    题目链接 题意:就是给你一颗这样的树,用一个$y$来除以两点之间每条边的权值,比如$3->7$,问最后的y的是多少,修改操作是把权值变成更小的. 这个$(y<=10^{18})$除的权值如 ...

  2. Codeforces Round #329 (Div. 2) D. Happy Tree Party 树链剖分

    D. Happy Tree Party Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/593/p ...

  3. Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+ 树状数组或线段树

    C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...

  4. Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+树状数组

    C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...

  5. Count on a tree SPOJ 10628 主席树+LCA(树链剖分实现)(两种存图方式)

    Count on a tree SPOJ 10628 主席树+LCA(树链剖分实现)(两种存图方式) 题外话,这是我第40篇随笔,纪念一下.<( ̄︶ ̄)↗[GO!] 题意 是说有棵树,每个节点上 ...

  6. Codeforces Round #200 (Div. 1) D Water Tree 树链剖分 or dfs序

    Water Tree 给出一棵树,有三种操作: 1 x:把以x为子树的节点全部置为1 2 x:把x以及他的所有祖先全部置为0 3 x:询问节点x的值 分析: 昨晚看完题,马上想到直接树链剖分,在记录时 ...

  7. Codeforces Round #200 (Div. 1) D. Water Tree 树链剖分+线段树

    D. Water Tree time limit per test 4 seconds memory limit per test 256 megabytes input standard input ...

  8. Codeforces Round #200 (Div. 1)D. Water Tree

    简单的树链剖分+线段树 #include<bits\stdc++.h> using namespace std; #define pb push_back #define lson roo ...

  9. CF 504E Misha and LCP on Tree——后缀数组+树链剖分

    题目:http://codeforces.com/contest/504/problem/E 树链剖分,把重链都接起来,且把每条重链的另一种方向的也都接上,在这个 2*n 的序列上跑后缀数组. 对于询 ...

随机推荐

  1. close与shutdown函数

    linux网络编程之socket(十):shutdown 与 close 函数的区别  http://blog.csdn.net/yijiu0711/article/details/17349169 ...

  2. div加jquery实现iframe标签的功能

    由于最近项目需要,前端后台都完全采用div+css的方式布局.因而左思右想,有什么办法可以替代常用的iframe上下左右的布局方式,而且页面只是局部刷新.参考了许多前辈的资料,并加以整理,因而有了以下 ...

  3. Java中使用Collections.sort()方法对数字和字符串泛型的LIst进行排序

    在List的排序中常用的是Collections.sort()方法,可以对String类型和Integer类型泛型的List集合进行排序. 首先演示sort()方法对Integer类型泛型的List排 ...

  4. IOS lib(.a)库冲突解决办法

    在引入第三方lib(.a)库时,经常会由于第三方lib库中又引入同你现有工程相同的开源代码而造成.o冲突,最近在集成汉王名片识别时发生ASIHttp的.o冲突.我想说的是像这种开源的使用率很高的源代码 ...

  5. HTML~From

    表单用于向服务器传输数据. http://www.w3school.com.cn/tags/tag_form.asp 文本域(Text fields) 本例演示如何在HTML页面创建文本域.用户可以在 ...

  6. xdebug安装

    sudo apt-get install php-pearsudo apt-get install php5-devsudo pecl install xdebug 下载安装编译完后,在php.ini ...

  7. sql server 取日期

    Select CONVERT(varchar(100), GETDATE(), 0): 05 16 2006 10:57AM Select CONVERT(varchar(100), GETDATE( ...

  8. 【leetcode】Best Time to Buy and Sell 3 (hard) 自己做出来了 但别人的更好

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  9. 【XLL 文档翻译】【第2部分】C API 回调函数 Excel4, Excel12

    Excel4 和 Excel12 函数使得 DLL 可以调用 Excel 工作表函数.宏表函数.命令.XLL特定函数或命令.最近的一些 Excel 版本都支持 Excel12 函数.这两个函数支持下面 ...

  10. Hibernate查询语句

    1 hql查询 Hibernate的查询语句,hiberante提供的面向对象的查询语言,和sql语句的语法的相似.而且严格区分大小写. 1.1 from字句 /** * hql: from 字句 * ...