Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 14395    Accepted Submission(s): 7313

Problem Description
Before
ACM can do anything, a budget must be prepared and the necessary
financial support obtained. The main income for this action comes from
Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some
ACM member has any small money, he takes all the coins and throws them
into a piggy-bank. You know that this process is irreversible, the coins
cannot be removed without breaking the pig. After a sufficiently long
time, there should be enough cash in the piggy-bank to pay everything
that needs to be paid.

But there is a big problem with
piggy-banks. It is not possible to determine how much money is inside.
So we might break the pig into pieces only to find out that there is not
enough money. Clearly, we want to avoid this unpleasant situation. The
only possibility is to weigh the piggy-bank and try to guess how many
coins are inside. Assume that we are able to determine the weight of the
pig exactly and that we know the weights of all coins of a given
currency. Then there is some minimum amount of money in the piggy-bank
that we can guarantee. Your task is to find out this worst case and
determine the minimum amount of cash inside the piggy-bank. We need your
help. No more prematurely broken pigs!

 
Input
The
input consists of T test cases. The number of them (T) is given on the
first line of the input file. Each test case begins with a line
containing two integers E and F. They indicate the weight of an empty
pig and of the pig filled with coins. Both weights are given in grams.
No pig will weigh more than 10 kg, that means 1 <= E <= F <=
10000. On the second line of each test case, there is an integer number N
(1 <= N <= 500) that gives the number of various coins used in
the given currency. Following this are exactly N lines, each specifying
one coin type. These lines contain two integers each, Pand W (1 <= P
<= 50000, 1 <= W <=10000). P is the value of the coin in
monetary units, W is it's weight in grams.
 
Output
Print
exactly one line of output for each test case. The line must contain
the sentence "The minimum amount of money in the piggy-bank is X." where
X is the minimum amount of money that can be achieved using coins with
the given total weight. If the weight cannot be reached exactly, print a
line "This is impossible.".
 
Sample Input
3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4
 
 
Sample Output
The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.
 
Source
思路:完全背包(DAG上的最短路)
记忆化

#include <cstdio>
#include <iostream>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std ;
int n, m, E, F ;
int dp[] ;
int v[], w[] ;
int getans(int sx)
{
int& res = dp[sx] ;
if(res != -) return res ;
res = << ;
for(int i = ; i <= n; ++i)
if(sx >= w[i]) res = min(res, getans(sx - w[i]) + v[i]) ;
return res ;
}
int main()
{
int _ ;
scanf("%d",&_) ;
while(_--)
{
memset(dp, -, sizeof dp) ;
scanf("%d%d%d",&E,&F,&n) ;
for(int i = ; i <= n; ++i)
scanf("%d%d",&v[i],&w[i]) ;
int s = F - E ;
dp[] = ;
int ans = getans(s) ;
if(ans == << ) printf("This is impossible.\n") ;
else printf("The minimum amount of money in the piggy-bank is %d.\n",ans) ;
}
}

递推

#include <cstdio>
#include <iostream>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std ;
int dp[] ;
int v[], w[] ;
int main()
{
int _ ;
scanf("%d",&_) ;
while(_--)
{
int n, E, F ;
scanf("%d%d%d",&E,&F,&n) ;
int s = F - E ;
for(int i = ; i <= n ;++i)
scanf("%d%d",&v[i],&w[i]) ;
for(int i = ; i <= ; ++i)
dp[i] = << ;
dp[] = ;
for(int i = ; i <= n; ++i)
for(int j = w[i]; j <= s; ++j)
dp[j] = min(dp[j],dp[j - w[i]] + v[i]) ;
if(dp[s] == << ) printf("This is impossible.\n") ;
else printf("The minimum amount of money in the piggy-bank is %d.\n",dp[s]) ;
}
}

hdu 1114 Piggy-Bank的更多相关文章

  1. Piggy-Bank(HDU 1114)背包的一些基本变形

    Piggy-Bank  HDU 1114 初始化的细节问题: 因为要求恰好装满!! 所以初始化要注意: 初始化时除了F[0]为0,其它F[1..V]均设为−∞. 又这个题目是求最小价值: 则就是初始化 ...

  2. 怒刷DP之 HDU 1114

    Piggy-Bank Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit S ...

  3. hdu 1114 dp动规 Piggy-Bank

    Piggy-Bank Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit S ...

  4. HDOJ(HDU).1114 Piggy-Bank (DP 完全背包)

    HDOJ(HDU).1114 Piggy-Bank (DP 完全背包) 题意分析 裸的完全背包 代码总览 #include <iostream> #include <cstdio&g ...

  5. HDU 1114 Piggy-Bank(一维背包)

    题目地址:HDU 1114 把dp[0]初始化为0,其它的初始化为INF.这样就能保证最后的结果一定是满的,即一定是从0慢慢的加上来的. 代码例如以下: #include <algorithm& ...

  6. HDU 1114 完全背包 HDU 2191 多重背包

    HDU 1114 Piggy-Bank 完全背包问题. 想想我们01背包是逆序遍历是为了保证什么? 保证每件物品只有两种状态,取或者不取.那么正序遍历呢? 这不就正好满足完全背包的条件了吗 means ...

  7. --hdu 1114 Piggy-Bank(完全背包)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1114 AC code: #include<bits/stdc++.h> using nam ...

  8. [HDU 1114] Piggy-Bank (动态规划)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1114 简单完全背包,不多说. #include <cstdio> #include < ...

  9. HDU 1114 Piggy-Bank(完全背包)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1114 题目大意:根据储钱罐的重量,求出里面钱最少有多少.给定储钱罐的初始重量,装硬币后重量,和每个对应 ...

  10. (完全背包) Piggy-Bank (hdu 1114)

    题目大意:              告诉你钱罐的初始重量和装满的重量, 你可以得到这个钱罐可以存放钱币的重量,下面有 n 种钱币, n 组, 每组告诉你这种金币的价值和它的重量,问你是否可以将这个钱 ...

随机推荐

  1. 在微信浏览器中如何让他自动关闭当前页面回到会话框js

    <script type="text/javascript"> wx.config(jssdkconfig); require(['jquery', 'util'], ...

  2. iOS应用架构谈(三):网络层设计方案(上)

    iOS客户端应用架构看似简单,但实际上要考虑的事情不少.本文作者将以系列文章的形式来讨论iOS应用架构中的种种问题,本文是其中的第三篇,主要讲网络层设计以及安全机制和优化方案. 前言 网络层在一个Ap ...

  3. September 16th 2016 Week 38th Friday

    All the treasures of the earth would not bring back one lost moment. 机会失去不再来,千贯万贯难赎回. Cherish your h ...

  4. CodeForces 282C(位运算)

    C. XOR and OR time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  5. MVC - 20.前台ajax分页

    1.用pager方法,输入参数,会返回一个导航条的html字符串.方法的内部比较简单. ajax-pager.js /** * pageSize, 每页显示数 * pageIndex, 当前页数 * ...

  6. 与你相遇好幸运,Tippecanoe在Centos下の安装

    全新的CentOS 7 x86_64 安装编译工具 yum install -y gcc automake autoconf libtool make yum insyall -y gcc gcc-c ...

  7. c++11的初始化

    c++11 中类型初始更加方便 比如     vector<int> vec = {1,2,3}; vector<int> vec{1,2,3}; map<string, ...

  8. python多进程程序之间交换数据的两种办法--Queue和Pipe

    合在一起作的测试. #!/usr/bin/env python # -*- coding: utf-8 -*- import multiprocessing import random import ...

  9. 在iMac机os x上装win7双系统经验心得

    首先,以上iMac的内存超过4GB,需要安装x64版的win7,可以用QQ旋风从这里下载(cn_windows_7_ultimate_with_sp1_x64_dvd_u_677408.iso) 下载 ...

  10. OS X thrift setup

    OS X Setup The following command install all the required tools and libraries to build and install t ...