Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 14395    Accepted Submission(s): 7313

Problem Description
Before
ACM can do anything, a budget must be prepared and the necessary
financial support obtained. The main income for this action comes from
Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some
ACM member has any small money, he takes all the coins and throws them
into a piggy-bank. You know that this process is irreversible, the coins
cannot be removed without breaking the pig. After a sufficiently long
time, there should be enough cash in the piggy-bank to pay everything
that needs to be paid.

But there is a big problem with
piggy-banks. It is not possible to determine how much money is inside.
So we might break the pig into pieces only to find out that there is not
enough money. Clearly, we want to avoid this unpleasant situation. The
only possibility is to weigh the piggy-bank and try to guess how many
coins are inside. Assume that we are able to determine the weight of the
pig exactly and that we know the weights of all coins of a given
currency. Then there is some minimum amount of money in the piggy-bank
that we can guarantee. Your task is to find out this worst case and
determine the minimum amount of cash inside the piggy-bank. We need your
help. No more prematurely broken pigs!

 
Input
The
input consists of T test cases. The number of them (T) is given on the
first line of the input file. Each test case begins with a line
containing two integers E and F. They indicate the weight of an empty
pig and of the pig filled with coins. Both weights are given in grams.
No pig will weigh more than 10 kg, that means 1 <= E <= F <=
10000. On the second line of each test case, there is an integer number N
(1 <= N <= 500) that gives the number of various coins used in
the given currency. Following this are exactly N lines, each specifying
one coin type. These lines contain two integers each, Pand W (1 <= P
<= 50000, 1 <= W <=10000). P is the value of the coin in
monetary units, W is it's weight in grams.
 
Output
Print
exactly one line of output for each test case. The line must contain
the sentence "The minimum amount of money in the piggy-bank is X." where
X is the minimum amount of money that can be achieved using coins with
the given total weight. If the weight cannot be reached exactly, print a
line "This is impossible.".
 
Sample Input
3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4
 
 
Sample Output
The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.
 
Source
思路:完全背包(DAG上的最短路)
记忆化

#include <cstdio>
#include <iostream>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std ;
int n, m, E, F ;
int dp[] ;
int v[], w[] ;
int getans(int sx)
{
int& res = dp[sx] ;
if(res != -) return res ;
res = << ;
for(int i = ; i <= n; ++i)
if(sx >= w[i]) res = min(res, getans(sx - w[i]) + v[i]) ;
return res ;
}
int main()
{
int _ ;
scanf("%d",&_) ;
while(_--)
{
memset(dp, -, sizeof dp) ;
scanf("%d%d%d",&E,&F,&n) ;
for(int i = ; i <= n; ++i)
scanf("%d%d",&v[i],&w[i]) ;
int s = F - E ;
dp[] = ;
int ans = getans(s) ;
if(ans == << ) printf("This is impossible.\n") ;
else printf("The minimum amount of money in the piggy-bank is %d.\n",ans) ;
}
}

递推

#include <cstdio>
#include <iostream>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std ;
int dp[] ;
int v[], w[] ;
int main()
{
int _ ;
scanf("%d",&_) ;
while(_--)
{
int n, E, F ;
scanf("%d%d%d",&E,&F,&n) ;
int s = F - E ;
for(int i = ; i <= n ;++i)
scanf("%d%d",&v[i],&w[i]) ;
for(int i = ; i <= ; ++i)
dp[i] = << ;
dp[] = ;
for(int i = ; i <= n; ++i)
for(int j = w[i]; j <= s; ++j)
dp[j] = min(dp[j],dp[j - w[i]] + v[i]) ;
if(dp[s] == << ) printf("This is impossible.\n") ;
else printf("The minimum amount of money in the piggy-bank is %d.\n",dp[s]) ;
}
}

hdu 1114 Piggy-Bank的更多相关文章

  1. Piggy-Bank(HDU 1114)背包的一些基本变形

    Piggy-Bank  HDU 1114 初始化的细节问题: 因为要求恰好装满!! 所以初始化要注意: 初始化时除了F[0]为0,其它F[1..V]均设为−∞. 又这个题目是求最小价值: 则就是初始化 ...

  2. 怒刷DP之 HDU 1114

    Piggy-Bank Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit S ...

  3. hdu 1114 dp动规 Piggy-Bank

    Piggy-Bank Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit S ...

  4. HDOJ(HDU).1114 Piggy-Bank (DP 完全背包)

    HDOJ(HDU).1114 Piggy-Bank (DP 完全背包) 题意分析 裸的完全背包 代码总览 #include <iostream> #include <cstdio&g ...

  5. HDU 1114 Piggy-Bank(一维背包)

    题目地址:HDU 1114 把dp[0]初始化为0,其它的初始化为INF.这样就能保证最后的结果一定是满的,即一定是从0慢慢的加上来的. 代码例如以下: #include <algorithm& ...

  6. HDU 1114 完全背包 HDU 2191 多重背包

    HDU 1114 Piggy-Bank 完全背包问题. 想想我们01背包是逆序遍历是为了保证什么? 保证每件物品只有两种状态,取或者不取.那么正序遍历呢? 这不就正好满足完全背包的条件了吗 means ...

  7. --hdu 1114 Piggy-Bank(完全背包)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1114 AC code: #include<bits/stdc++.h> using nam ...

  8. [HDU 1114] Piggy-Bank (动态规划)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1114 简单完全背包,不多说. #include <cstdio> #include < ...

  9. HDU 1114 Piggy-Bank(完全背包)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1114 题目大意:根据储钱罐的重量,求出里面钱最少有多少.给定储钱罐的初始重量,装硬币后重量,和每个对应 ...

  10. (完全背包) Piggy-Bank (hdu 1114)

    题目大意:              告诉你钱罐的初始重量和装满的重量, 你可以得到这个钱罐可以存放钱币的重量,下面有 n 种钱币, n 组, 每组告诉你这种金币的价值和它的重量,问你是否可以将这个钱 ...

随机推荐

  1. 【linux】学习5

    鸟哥那本书第11章的内容 管理整个计算机硬件的是操作系统的内核(kernel),内核是需要保护的,我们一般用户只能通过shell来跟内核通信.Shell是用户操作系统的接口 cat  /etc/pas ...

  2. vs2010:fatal error LNK1123: 转换到 COFF 期间失败

    解决方法: 项目\属性\配置属性\清单工具\输入和输出\嵌入清单:原来是“是”,改成“否”.

  3. js正则匹配以固定格式结尾的字符串并匹配是手机访问,则跳转

    <script> //var pcUrl = "http://res.meadin.com/HotelData/98986_1.shtml"; var pcUrl = ...

  4. SEH-关于捕获memcpy的异常

    网上有说memcpy是C语言写的,没有异常处理机制. 但是貌似SEH可以处理. SEH("Structured Exception Handling"),即结构化异常处理·是(wi ...

  5. Meta标签实现阻止移动设备(手机、Pad)的浏览器双击放大网页

    一.背景 在当今这个移动设备发展越来越快,并且技术越来越成熟的时代,移动设备成了企业扩展业务不可或缺的重要领域之一,随之而来的是适应手机的网站层出不穷,在开发过程中,我们往往会遇到一个很尴尬的问题:移 ...

  6. hdu1722(gcd)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1722 题意:要使一块蛋糕既能均分给a个人,又能均分给b个人,问至少需要分成几块(不需要每块都一样大小) ...

  7. 【转载】 Pyqt QStackedWidget堆栈窗体

    转载地址: http://blog.csdn.net/a649518776/article/details/6636578 下面用代码实现上面窗口的设计 # -*- coding: utf-8 -*- ...

  8. 【JAVA集合框架之Set】

    一.Set概述. Set集合的特点是元素不允许重复,而且是无序的(添加和取出的顺序不一致). Set接口中的方法和Collection接口中的方法几乎相同,略. Set接口下常用的两个类:HashSe ...

  9. jQuery函数attr()和prop()的区别

    在jQuery中,attr()函数和prop()函数都用于设置或获取指定的属性,它们的参数和用法也几乎完全相同. 但不得不说的是,这两个函数的用处却并不相同.下面我们来详细介绍这两个函数之间的区别. ...

  10. SQL Server 2014 BI新特性(一)五个关键点带你了解Excel下的Data Explorer

    Data Explorer是即将发布的SQL Server 2014里的一个新特性,借助这个特性讲使企业中的自助式的商业智能变得更加的灵活,从而也降低了商业智能的门槛. 此文是在微软商业智能官方博客里 ...